15,415 research outputs found
Comparison of fine structural mice via coarse iteration
Let M be a fine structural mouse. Let D be a fully backgrounded
L[E]-construction computed inside an iterable coarse premouse S. We describe a
process comparing M with D, through forming iteration trees on M and on S. We
then prove that this process succeeds
On Carbon Burning in Super Asymptotic Giant Branch Stars
We explore the detailed and broad properties of carbon burning in Super
Asymptotic Giant Branch (SAGB) stars with 2755 MESA stellar evolution models.
The location of first carbon ignition, quenching location of the carbon burning
flames and flashes, angular frequency of the carbon core, and carbon core mass
are studied as a function of the ZAMS mass, initial rotation rate, and mixing
parameters such as convective overshoot, semiconvection, thermohaline and
angular momentum transport. In general terms, we find these properties of
carbon burning in SAGB models are not a strong function of the initial rotation
profile, but are a sensitive function of the overshoot parameter. We
quasi-analytically derive an approximate ignition density, g cm, to predict the location of first carbon ignition
in models that ignite carbon off-center. We also find that overshoot moves the
ZAMS mass boundaries where off-center carbon ignition occurs at a nearly
uniform rate of / 1.6
. For zero overshoot, =0.0, our models in the ZAMS mass
range 8.9 to 11 show off-center carbon ignition. For
canonical amounts of overshooting, =0.016, the off-center carbon
ignition range shifts to 7.2 to 8.8 . Only systems with
and ZAMS mass 7.2-8.0 show
carbon burning is quenched a significant distance from the center. These
results suggest a careful assessment of overshoot modeling approximations on
claims that carbon burning quenches an appreciable distance from the center of
the carbon core.Comment: Accepted ApJ; 23 pages, 21 figures, 5 table
Computational analysis of the SSME fuel preburner flow
A computational fluid dynamics model which simulates the steady state operation of the SSME fuel preburner is developed. Specifically, the model will be used to quantify the flow factors which cause local hot spots in the fuel preburner in order to recommend experiments whereby the control of undesirable flow features can be demonstrated. The results of a two year effort to model the preburner are presented. In this effort, investigating the fuel preburner flowfield, the appropriate transport equations were numerically solved for both an axisymmetric and a three-dimensional configuration. Continuum's VAST (Variational Solution of the Transport equations) code, in conjunction with the CM-1000 Engineering Analysis Workstation and the NASA/Ames CYBER 205, was used to perform the required calculations. It is concluded that the preburner operational anomalies are not due to steady state phenomena and must, therefore, be related to transient operational procedures
Hydraulic mechanism to limit torsional loads between the IUS and space transportation system orbiter
The Inertial Upper Stage (IUS) is a two-stage booster used by NASA and the Defense Department to insert payloads into geosynchronous orbit from low-Earth orbit. The hydraulic mechanism discussed here was designed to perform a specific dynamic and static interface function within the Space Transportation System's Orbiter. Requirements, configuration, and application of the hydraulic mechanism with emphasis on performance and methods of achieving zero external hydraulic leakage are discussed. The hydraulic load-leveler mechanism meets the established design requirements for operation in a low-Earth orbit. Considerable testing was conducted to demonstrate system performance and verification that external leakage had been reduced to zero. Following each flight use of an ASE, all hydraulic mechanism components are carefully inspected for leakage. The ASE, including the hydraulic mechanism, has performed without any anomalies during all IUS flights
Theory of zone radiometry
A spectroscopic instrumentation system was developed which was used to measure temperature and concentration distributions in axisymmetric and two dimensional combusting flows. This measurement technique is known as zone radiometry
Calculation of flow about posts and powerhead model
A three dimensional analysis of the non-uniform flow around the liquid oxygen (LOX) posts in the Space Shuttle Main Engine (SSME) powerhead was performed to determine possible factors contributing to the failure of the posts. Also performed was three dimensional numerical fluid flow analysis of the high pressure fuel turbopump (HPFTP) exhaust system, consisting of the turnaround duct (TAD), two-duct hot gas manifold (HGM), and the Version B transfer ducts. The analysis was conducted in the following manner: (1) modeling the flow around a single and small clusters (2 to 10) of posts; (2) modeling the velocity field in the cross plane; and (3) modeling the entire flow region with a three dimensional network type model. Shear stress functions which will permit viscous analysis without requiring excessive numbers of computational grid points were developed. These wall functions, laminar and turbulent, have been compared to standard Blasius solutions and are directly applicable to the cylinder in cross flow class of problems to which the LOX post problem belongs
Simulation of solidification in a Bridgman cell
Bridgman-type crystal growth techniques are attractive methods for producing homogeneous, high-quality infrared detector and junction device materials. However, crystal imperfections and interface shapes still must be controlled through modification of the temperature and concentration gradients created during solidification. The objective of this investigation was to study the temperature fields generated by various cell and heatpipe configurations and operating conditions. Continuum's numerical model of the temperature, species concentrations, and velocity fields was used to describe the thermal characteristics of Bridgman cell operation
A preliminary study of the effects of vortex diffusers (winglets) on wing flutter
Some experimental flutter results are presented for a simple, flat-plate wing model and for the same wing model equipped with two different upper surface vortex diffusers over the Mach number range from about 0.70 to 0.95. Both vortex diffusers had the same planform, but one weighed about 0.3 percent of the basic wing weight, whereas the other weighed about 1.8 percent of the wing weight. The addition of the lighter vortex diffuser reduced the flutter dynamic pressure by about 3 percent; the heavier vortex diffuser reduced the flutter dynamic pressure by about 12 percent. The experimental flutter results are compared at a Mach number of 0.80 with analytical flutter results obtained by using doublet lattice and lifting surface (Kernel function) unsteady aerodynamic theories
Preliminary study of effects of winglets on wing flutter
Some experimental flutter results are presented over a Mach number range from about 0.70 to 0.95 for a simple, swept, tapered, flat-plate wing model having a planform representative of subsonic transport airplanes and for the same wing model equipped with two different upper surface winglets. Both winglets had the same planform and area (about 2 percent of the basic-wing area); however, one weighed about 0.3 percent of the basic-wing weight, and the other weighed about 1.8 percent of the wing weight. The addition of the lighter winglet reduced the wing-flutter dynamic pressure by about 3 percent; the heavier winglet reduced the wing-flutter dynamic pressure by about 12 percent. The experimental flutter results are compared at a Mach number of 0.80 with analytical flutter results obtained by using doublet-lattice and lifting-surface (kernel-function) unsteady aerodynamic theories
- …
