263 research outputs found

    Pregnant Smokers Receiving Opioid Agonist Therapy Have an Elevated Nicotine Metabolite Ratio: A Replication Study.

    Get PDF
    INTRODUCTION: Pregnant women exposed chronically to opioids smoked more cigarettes per day (CPD) and had a higher nicotine metabolite ratio (NMR), 3-hydroxycotinine/cotinine, a biomarker of nicotine metabolism and clearance, than those not receiving opioids. We examined CPD and NMR in a group of pregnant smokers, a quarter of whom were receiving opioid agonist therapy (OAT). AIMS AND METHODS: Pregnant smokers recruited to participate in a placebo-controlled trial of bupropion for smoking cessation provided a blood sample for measurement of NMR. RESULTS: Half (52.4%) of the 124 women with NMR data were African American. OAT-treated women (n = 34, 27.4%; 27 receiving methadone and 7 buprenorphine) were more likely to be white (79% vs. 30%, p \u3c .001) and to have a lower mean PHQ-9 total score (2.91 [SD = 2.83] vs. 4.83 [SD = 3.82], p = .007). OAT-treated women reported smoking more CPD (9.50 [SD = 5.26] vs. 7.20 [SD = 3.65], p = .005) and had higher NMR (0.78 [SD = 0.36] vs. 0.56 [SD = 0.25], p = .001) than the non-OAT-treated group. In a linear regression analysis adjusting for race, depression severity, and CPD, NMR was greater in the OAT group (p = .025), among whom the daily methadone-equivalent dosage correlated with NMR (Spearman\u27s ρ = 0.49, p = .003). CONCLUSIONS: Consistent with the findings of Oncken et al. (2019), we found that OAT smokers smoked more and had higher NMR than non-OAT smokers. As higher NMR is associated with a reduced likelihood of smoking cessation, the effects on NMR of both pregnancy and OAT could contribute to a lower smoking cessation rate in pregnant smokers receiving chronic opioid therapy. IMPLICATIONS: We replicated the finding that the NMR is significantly greater among pregnant smokers receiving OAT than those not receiving this treatment for opioid use disorder. Furthermore, we found that the dosage of the OAT was significantly associated with the NMR level. These findings may contribute to a poorer response to smoking cessation treatment in pregnant women treated with OAT, particularly those receiving high-dose therapy, and raise the question of whether novel approaches are needed to treat smoking in this subgroup of pregnant smokers

    Associating CYP2A6 structural variants with ovarian and lung cancer risk in the UK Biobank : replication and extension

    Get PDF
    CYP2A6 is a polymorphic enzyme that inactivates nicotine; structural variants (SVs) include gene deletions and hybrids with the neighboring pseudogene CYP2A7. Two studies found that CYP2A7 deletions were associated with ovarian cancer risk. Using their methodology, we aimed to characterize CYP2A6 SVs (which may be misidentified by prediction software as CYP2A7 SVs), then assess CYP2A6 SV-associated risk for ovarian cancer, and extend analyses to lung cancer. An updated reference panel was created to impute CYP2A6 SVs from UK Biobank array data. Logistic regression models analyzed the association between CYP2A6 SVs and cancer risk, adjusting for covariates. Software-predicted CYP2A7 deletions were concordant with known CYP2A6 SVs. Deleterious CYP2A6 SVs were not associated with ovarian cancer (OR = 1.06; 95% CI: 0.80-1.37; p = 0.7) but did reduce the risk of lung cancer (OR = 0.44; 95% CI: 0.29-0.64;

    Genotyping, characterization, and imputation of known and novel CYP2A6 structural variants using SNP array data

    Get PDF
    CYP2A6 metabolically inactivates nicotine. Faster CYP2A6 activity is associated with heavier smoking and higher lung cancer risk. The CYP2A6 gene is polymorphic, including functional structural variants (SV) such as gene deletions (CYP2A6*4), duplications (CYP2A6*1 × 2), and hybrids with the CYP2A7 pseudogene (CYP2A6*12, CYP2A6*34). SVs are challenging to genotype due to their complex genetic architecture. Our aims were to develop a reliable protocol for SV genotyping, functionally phenotype known and novel SVs, and investigate the feasibility of CYP2A6 SV imputation from SNP array data in two ancestry populations. European- (EUR; n = 935) and African- (AFR; n = 964) ancestry individuals from smoking cessation trials were genotyped for SNPs using an Illumina array and for CYP2A6 SVs using Taqman copy number (CN) assays. SV-specific PCR amplification and Sanger sequencing was used to characterize a novel SV. Individuals with SVs were phenotyped using the nicotine metabolite ratio, a biomarker of CYP2A6 activity. SV diplotype and SNP array data were integrated and phased to generate ancestry-specific SV reference panels. Leave-one-out cross-validation was used to investigate the feasibility of CYP2A6 SV imputation. A minimal protocol requiring three Taqman CN assays for CYP2A6 SV genotyping was developed and known SV associations with activity were replicated. The first domain swap CYP2A6-CYP2A7 hybrid SV, CYP2A6*53, was identified, sequenced, and associated with lower CYP2A6 activity. In both EURs and AFRs, most SV alleles were identified using imputation (>70% and >60%, respectively); importantly, false positive rates were <1%. These results confirm that CYP2A6 SV imputation can identify most SV alleles, including a novel SV

    Pharmacogenetics of Nicotine Metabolism in Twins: Methods and Procedures

    Get PDF
    This article describes a pharmacogenetic investigation of nicotine metabolism in twins. One hundred and thirty-nine twin pairs (110 monozygotic and 29 dizygotic) were recruited and assessed for smoking status, zygosity, and health conditions known or suspected to affect drug metabolism. Participants underwent a 30-minute infusion of stable isotope-labeled nicotine and its major metabolite, cotinine, followed by an 8-hour in-hospital stay. Blood and urine samples were taken at regular intervals for analysis of nicotine, cotinine, and metabolites by gas chromatography-mass spectrometry or liquid chromatography-mass spectrometry and subsequent characterization of pharmacokinetic phenotypes. DNA was genotyped to confirm zygosity and for variation in the primary gene involved in nicotine metabolism, CYP2A6. Univariate and multivariate biometric analyses planned for the future will determine genetic and environmental influences on each pharmacokinetic measure individually and in combination with each other, and in the presence and absence of covariates, including measured genotype. When the analyses are completed, this study will result in a more complete characterization of the impact of genetic and environmental influences on nicotine and cotinine metabolic pathways than has heretofore been reported. The approach taken, with its use of a quantitative model of nicotine metabolism, highly refined metabolic phenotypes, measured genotype, and advanced tools for biometric genetic analysis, provides a model for the use of twins in next-generation studies of complex drug-metabolism phenotypes

    Partnering to proceed: scaling up adolescent sexual reproductive health programmes in Tanzania. Operational research into the factors that influenced local government uptake and implementation

    Get PDF
    BACKGROUND: Little is known about how to implement promising small-scale projects to reduce reproductive ill health and HIV vulnerability in young people on a large scale. This evaluation documents and explains how a partnership between a non-governmental organization (NGO) and local government authorities (LGAs) influenced the LGA-led scale-up of an innovative NGO programme in the wider context of a new national multisectoral AIDS strategy. METHODS: Four rounds of semi-structured interviews with 82 key informants, 8 group discussions with 49 district trainers and supervisors (DTS), 8 participatory workshops involving 52 DTS, and participant observations of 80% of LGA-led and 100% of NGO-led meetings were conducted, to ascertain views on project components, flow of communication and decision-making and amount of time DTS utilized undertaking project activities. RESULTS: Despite a successful ten-fold scale-up of intervention activities in three years, full integration into LGA systems did not materialize. LGAs contributed significant human resources but limited finances; the NGO retained control over finances and decision-making and LGAs largely continued to view activities as NGO driven. Embedding of technical assistants (TAs) in the LGAs contributed to capacity building among district implementers, but may paradoxically have hindered project integration, because TAs were unable to effectively transition from an implementing to a facilitating role. Operation of NGO administration and financial mechanisms also hindered integration into district systems. CONCLUSIONS: Sustainable intervention scale-up requires operational, financial and psychological integration into local government mechanisms. This must include substantial time for district systems to try out implementation with only minimal NGO support and modest output targets. It must therefore go beyond the typical three- to four-year project cycles. Scale-up of NGO pilot projects of this nature also need NGOs to be flexible enough to adapt to local government planning cycles and ongoing evaluation is needed to ensure strategies employed to do so really do achieve full intervention integration
    corecore