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Abstract (WC=249) 

 

In an era of Precision Medicine it is vital to collect biological data within clinical trials and to 

integrate their analysis within the outcomes of the trial. The identification of genomic biomarkers 

that affect treatment response to smoking cessation treatment, both pharmacological and 

behavioral, or susceptibility to medication-related adverse reactions, holds real promise to 

improving treatment efficacy and to tailoring the treatment approach to the individual. However, 

a clear challenge in identifying reliable biomarkers is in obtaining adequate sample sizes. 

Consortium-based approaches will likely be necessary to yield real successes. Thus, meta-

analyses of data from individual smoking cessation trials will become crucial and will be 

facilitated by standardized trial designs, assessments, and outcomes, and harmonizable 

measures. To foster increased collection of high quality genetics data in clinical trials, we 

discuss 1) Genetically informed trial design, 2) Biological samples (collection requirements, 

storage, and analysis with a focus on genomic data) and genetics consortia, 3) Participant 

consent and data sharing requirements for Institutional Review Board (IRB) approvals, and 4) 

Information on phenotype characterization, and meta-analysis. This work aligns with the 

objectives of the Precision Medicine Initiative, and offers guidance for integrating treatment 

research and genetics/genomics within the nicotine and tobacco research community. It is 

intended to promote the collection and genotyping of biosamples in existing subject samples, as 

well as the integration of genetic research elements into future study designs. This paper cross-

references a companion paper in this issue that reviews current evidence on genetic and 

epigenetic markers in cessation trials. 

Keywords: Addiction, Cessation, Genetic Research, Treatment and intervention. 
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Implications 

This paper outlines a framework for the consistent integration of biological data/samples into 

smoking cessation pharmacotherapy trials, aligned with the objectives of the recently unveiled 

Precision Medicine Initiative. Our goal is to encourage and provide support for treatment 

researchers to consider biosample collection and genotyping their existing samples, as well as 

integrating genetic analyses into their study design in order to realize precision medicine in 

treatment of nicotine dependence. 
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1. INTRODUCTION 

Smoking is a major risk for preventable death and disability,1-4 and smoking cessation reduces 

the risk of mortality.5 However, cessation failure is common despite clinical practice guidelines6 

and available cessation medications, which are associated with different efficacies, side effects, 

adherence, use constraints, and costs.7 Cessation treatment, pharmacological or behavioral, 

may be improved via precision medicine: i.e., optimizing treatments to maximize efficacy and 

minimize side effects.8,9 Smokers vary greatly in the benefit they derive from particular 

pharmacotherapies, and biomarkers can predict a smoker’s response to a specific 

pharmacotherapy.10-14 Because the health cost of cessation failure is high, there is a need to 

identify treatments that are most likely to be effective for smokers who want to quit and to 

maintain long term abstinence.  

 

An important initiative of the NIH is to develop precision medicine to improve care.15 The 

initiative will increase our ability to characterize smokers and predict their responses to 

cessation pharmacotherapies. Such studies will help optimize treatments for enhanced efficacy 

and medication adherence, and to reduce side effects. In recent years, scientists have gained 

extensive knowledge on how personal factors (including genetics) can be used to predict 

important health outcomes.16 The concept of precision medicine is not new; clinical history of 

allergic reactions to medication, for instance, has been used to guide medication choice for 

more than a century.17 However, the assessment of individual variation has been dramatically 

improved by the recent development of large-scale biologic databases (i.e., the human genome 

sequence), and powerful methods for characterizing patients (i.e., proteomics, transcriptomics, 

epigenomics, metabolomics, and genomics). What is needed now is to leverage biological 

samples, test them rigorously, and ultimately use them to build the evidence-base needed to 

guide clinical practice. This will enable more accurate diagnoses, more rational disease 
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prevention strategies, better treatment selection, and the development of novel therapies, 

including ones for nicotine dependence and the multitude of tobacco-related diseases. 

 

The promise of precision medicine has already been fulfilled in some areas of medicine. For 

example, underlying causal genotypes are used to personalize cancer treatment.18  The 

application of genetic discoveries to clinical decision making and treatment decisions is 

occurring in a variety of medical specialties. For example, genetic screening has identified a 

specific molecular subset of non-small cell lung cancer patients, where patients positive for a 

specific oncogene were more likely to be young never-smokers or light smokers, compared to 

older, heavier smokers.19 In addition, guidelines from the College of American Pathologists and 

the International Association for the Study of Lung Cancer, recommend testing for two well-

characterized genetic biomarkers in patients newly diagnosed with non-small cell lung cancer: 

epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) for treatment 

guidance.20 The current clinical approach of using molecular and genetic phenotyping to guide 

clinical care of patients with lung cancer is a welcome addition to traditional therapy that has 

markedly limited effectiveness. In the field of addiction, genetic variants in the nicotinic receptor 

subunit gene CHRNA5, variants in the nicotine metabolism gene CYP2A6, and the nicotine 

metabolite ratio genotypes showed promise as a marker for smoking cessation 

pharmacotherapy selection. 21-25 

 

We are beginning to understand how to optimize therapies for other diseases based on different 

genetic polymorphisms.26,27 Thus, genetic variables are used to optimize drug selection and 

dosing;28  e.g., individual genetic profiles are used to avoid medications likely to cause serious 

adverse effects such as abacavir, carbamazepine and thiopurine.29-31 Finally, with individual 

whole genome or exome sequencing, we can now not only better classify diseases, but also 
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diagnose patients with previously undiagnosed genetic diseases.32,33 The Evaluation of 

Genomic Applications in Practice and Prevention34 Initiative, established by the National Office 

of Public Health Genomics at the Centers for Disease Control and Prevention, supports the 

development and implementation of a rigorous, evidence-based process for evaluating genetic 

tests and other genomic applications for clinical and public health practice in the United 

States.34 

 

Based on the utility of individual biological variability for clinical care, we propose that, ideally, 

examination of biological samples should be integrated into clinical trials to address issues that 

are central to study aims, rather than as a data collection procedure merely affixed to the study. 

We encourage the next generation of scientists to develop creative new approaches for 

detecting, measuring, and analyzing a wide range of biomedical information including molecular, 

genomic, cellular, clinical, behavioral, physiological, and environmental parameters. The NIH’s 

Precision Medicine Initiative plans to recruit a longitudinal cohort of 1 million or more Americans 

to give consent for extensive characterization of biologic specimens (cell populations, proteins, 

metabolites, RNA, and DNA — including whole-genome sequencing, when costs permit) and 

behavioral data, all linked to their electronic health records as summarized in Figure 1.15 Blood 

specimens will be collected and processed using a standard CLIA compliant procedure, 

ensuring quality control and comparability, and sent to a local or central biorepository, that will 

support collection, processing, storage, retrieval and biochemical analysis and/or shipment to 

analytic laboratories, in addition to a wide range of phenotypic data including mobile health 

measures. Understanding the biological basis of complex traits will be informed by these 

technological advances in data generation from multiple levels of biological systems — including 

DNA sequencing,35 RNA expression,36,37 methylation patterns,38 other epigenetic markers,39 
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proteomics40 and metabolomics41 (see Figure 1). Corresponding actions are being undertaken 

in many other countries as part of their national genome strategies. 

 

Today, much treatment research is designed to develop and evaluate treatments that are 

expected to benefit the population as a whole, based on the expected response of a “typical” 

patient. However, individual patients can have markedly variable responses to therapy, ranging 

from highly efficacious outcome, to no effect, to deleterious outcome (see Figure 2). The roots 

of this variability likely include unrecognized differences in disease pathophysiology, 

environmental exposures, social and behavioral factors, and genetic factors. Prior research has, 

of course, used moderator variables to uncover person by treatment interactions. However, the 

new era will advance this effort via a much more precise and comprehensive assessment of 

individual biological characteristics. Thus, an important overarching goal is to determine whether 

and how state-of-the-art genomic biomarkers can be used to optimize smoking cessation 

pharmacotherapy to enhance efficacy and medication adherence, and to reduce side effects. 

 

To promote incorporation of genetics data into smoking cessation treatment research, in this 

review we discuss 1) study design considerations (e.g., genetically informed trial), 2) practical 

considerations of biological samples collection and participant consent for genetic data sharing 

requirements, 3) development of genetic consortia and meta-analysis to obtain adequate 

sample sizes for robust pharmacogenetics analyses, and 4) Information on phenotype 

characterization and outcome harmonization for cross-study comparisons. 

 

Key concepts and glossary 

This review seeks to inform a broad medical readership about the current status of how 

biological samples can be used in smoking cessation trials and to highlight the rationale, study 
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design, practical considerations, and opportunities for nicotine and tobacco researchers. Views 

are still evolving about several issues such as the clinical validity of potential genomic 

biomarkers. Current findings on biological markers for smoking cessation and a glossary for key 

genetic and “omic” terms are presented in a companion paper by Saccone et al.  

 

2. STUDY DESIGN CONSIDERATIONS AND EXAMPLES 

Here we present examples on how researchers can consider biosample collection and 

genotyping their existing samples, as well as integrating genetic analyses into their study 

design. Genetic data collection is easier compared to collection of therapeutic drug level or 

proteins, which may be more sensitive to temperature or light with more restrictive collection 

and storage procedures.  

 

A. Collecting biomarkers: Biomarkers relevant to nicotine and tobacco cessation research 

generally fall into three categories:42,43 (1) diagnostic biomarkers for patient selection; (2) 

pharmacodynamic biomarkers for optimal dosing; (3) predictive biomarkers for therapeutic 

efficacy, which may include pharmacodynamic (e.g.,genotypes at specific genetic variants, 

electroencephalogram or functional connectivity) and pharmacokinetic (e.g., nicotine metabolite 

ratio) biomarkers. Additional details on definitions of biomarkers and the Institute of Medicine’s 

proposed three-part framework for biomarker development (analytical validation, 

qualification/context of use and utilization)44 are described in more detail elsewhere.43  

 

Most biomarkers for omic research may be collected from whole blood or saliva. The timing of 

sample collection needs to be determined by the type and context of the research questions 

being addressed. For example, for germline DNA analyses, biosamples can be collected at any 

time prior to, during or after the study. However, gene expression and epigenetic studies are 
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often timed in relation to an exposure such as before and after drug administration or before and 

after smoking cessation, requiring careful adherence to the timing of a study’s primary endpoints 

in relevant tissue types. For example, some epigenetic markers are sensitive to smoking 

cessation and will revert to unexposed levels ranging from weeks to years after smoking 

cessation depending on specific markers. 45-47 Consent forms should be thorough and specific 

enough to include whatever type of biomarkers one intends to collect. Furthermore, informed 

consent documents would need to be modified any time a novel omic test is added to an extant 

research plan. Trained phlebotomists, who could be research assistants, that receive special 

training and meet CLIA-requirements, should collect whole blood samples. Saliva sample 

collection can be easily performed by study participants according to manufacturer’s protocols 

and clear participant instructions.  

 

For DNA collection, saliva sample collection can be performed feasibly by mail using pre-

addressed, return envelopes and collection kits available from multiple manufacturers.48,49 In 

contrast, collection of other omics data may be more restrictive such that all samples should be 

frozen in -80°C or colder freezers as rapidly as possible after collection in appropriate 

containers to maintain the specific omic features. Investigators designing a biomarker study 

without previous experience can often contact their institutions’ IRB for standard language 

required for informed consent documents and contact experienced investigators for sample 

collection, storage and processing protocols. We have also provided template language in 

Supplementary Table 1. 

  

B. Biomarker-based randomization: There are at least three general types of randomized 

controlled trial (RCT) designs for pharmacogenomic investigations of smoking cessation, as 

illustrated in Figure 3 – according to a presentation by Dr. Caryn Lerman at an Institute of 
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Medicine Roundtable on Translating Genomic-Based Research meeting on evidence generation 

for genomic diagnostic test development.50 Most pharmacogenetics studies of smoking 

cessation are analyses of genetic data from existing treatment studies (e.g., a single 

polymorphism, multiple polymorphisms, additive genetic risk scores or metabolite proxies for 

polymorphisms), and is called a Retrospective design. That is, analyses are conducted after 

completion of the RCT that relate patient biological variables such as genotype or metabolite 

status (e.g., normal vs. slow nicotine metabolizers) to targeted clinical outcomes: e.g., efficacy 

of the drug for smoking cessation or the reduction of nicotine withdrawal symptoms, smoking 

urges, drug dosing, or side effects (Figure 3). Retrospective trials are useful when the clinical 

utility of such markers is unknown or not well established at the time of trial initiation and can 

inform hypothesis generation, replication and independent validation. Retrospective designs 

have several limitations, such as unbalanced groups (status on a biomarker might be unevenly 

distributed across groups), reduced power resulting from either unbalanced groups or highly 

skewed biomarker distributions due to base rates of the biomarker status,  and missing data 

because not all patients consented to provide biosamples. 

 

Prospective pharmacogenomic trials can be divided into two types: prospective stratified and 

prospective screened.50 Prospective stratified trials conduct testing of a biomarker prior to trial 

entry and define a biomarker as ‘positive’ or ‘negative’. An advantage of this design is that the 

trial is hypothesis-driven, taking into account prior knowledge about a biomarker and members 

of the test population. Another advantage of this design is that it permits enrichment of the less 

common genotype or biomarker by oversampling during the screening process – in order to 

achieve balanced groups. For example, Lerman and colleagues tested smokers for the nicotine 

metabolite ratio (NMR; 3ʹ-hydroxycotinine/cotinine) and set an initial cut-off based upon prior 

knowledge51 to define ‘normal metabolizers’ and ‘slow metabolizers’.52 Marker positive and 
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marker negative smokers were then independently randomized to either nicotine replacement 

patch or placebo patch or varenicline, resulting in balanced groups by biomarker status and 

drug. Roughly 20% of patients, depending on ancestry, were slow metabolizers. Thus, 

oversampling of slow metabolizers was required in this prospective stratified study and resulted 

in excluding many patients who tested positive for normal metabolizer status. In another 

ongoing study by Chen and colleagues, participants receive prospectively stratified treatment 

randomization by the individual’s cessation-relevant genotypes such as the CHRNA5 D398N 

gene variant 21,23 in order to yield balanced groups for testing the relation of genotype status 

with medication efficacy and adverse effects. 22 

 

A third type of pharmacogenomic trial is the prospective screened design in which patients are 

randomized to receive biomarker-guided treatment or usual care. In the biomarker-guided 

treatment group, patients are tested for genotype or metabolite status and assigned to a 

treatment based on a hypothesized association of the marker with the efficacy of a particular 

drug (Figure 3). Assume for example that genotype AA (marker positive) for a given 

polymorphism predicts enhanced efficacy of nicotine replacement therapy (NRT), but not 

varenicline efficacy.  Genotype GG (marker negative) on the other hand, predicts enhanced 

efficacy of varenicline, but not NRT efficacy. Therefore, in the genotype-guided group patients 

with genotype AA would receive NRT and patients with genotype GG would receive varenicline. 

Patients in the usual care group would receive either a pre-defined standard medication, or they 

might be randomized to either of the drugs, or their physician might prescribe their medication 

based on usual practice. The results of the genotype-guided group would then be compared 

with the usual care (non-guided) group. An advantage of the prospective screened design is its 

potential for high ecological validity, offering evidence of whether or not a genotype- or 

metabolite-driven therapy provides improved effectiveness over non-guided therapy in non-
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research settings.50  

 

In addition to these three general designs for pharmacogenomics RCTs, other designs are more 

fitting for enabling clinical implementation and patient-centered effectiveness, such as pragmatic 

trial designs that evaluate metrics germane to real-world clinical practice such as cost-

effectiveness, patient satisfaction, clinical outcomes and feasibility.50,53,54 In addition, it may be 

advantageous for researchers to use factorial designs to explore pharmacogenetic relations. 

This is, in part, because of the efficiency of such designs, as they permit experimental analysis 

of multiple, discrete intervention components.55,56 Thus, the researcher might investigate the 

efficacies of both multiple pharmacotherapies, and at different levels of counseling intensities. 

Another advantage of such designs is that they provide relatively good power; when each factor 

comprises two levels, all subjects in the design contribute to estimation of the effects of each 

factor.  Also, they uniquely permit estimation of interaction effects. For instance, they might 

reveal that genetically determined differential response to a medication might be neutralized by 

more intense counseling, or by the conjoint use of two medications. For more details about trial 

design, we refer readers to these reports.43,50,55,56 

 

3. PRACTICAL CONSIDERATIONS 

The benefits and challenges of various biosampling options regarding biospecimen 

requirements, storage and analysis are summarized in Table 1. 

 

Collection of appropriate participant consent 

Collection of informed written consent from participants to use their biological samples for the 

purposes of genetics testing is critical to the ethical conduct of genetics research. Research 

participants need to know what data will be studied, who will have access to their genetics data, 
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what protection will be in place to ensure the anonymity of their genetic information is 

maintained, and any other study-specific information. 

 

For some clinical trials it may be necessary for the genetic testing to be a mandatory component 

of participation in the research. If this is the case, then consent for genetic testing should be 

included as part of the informed consent for the study as a whole. However for some studies, 

participating in the genetics part is not essential. In this case, the genetics part of the research 

can be presented to the participant as an optional ‘sub-study’, and a separate informed written 

consent specifically for genetic or other omics participation should be completed. In our 

experience, majority of participants consent to give biological samples (e.g. blood or saliva) for 

genetic studies 57, whether these results can generalized to individuals who decline biological 

samples needs to be examined in future research.  

 

Participants must be advised of the potential privacy risks associated with donating a DNA 

sample for research. The consent form should provide instruction to participants regarding the 

importance of actively protecting their own privacy. Participants should be informed about the 

Genetic Information Nondiscrimination Act (GINA), which makes it illegal for health insurance 

companies, group health plans, and most employers to discriminate against people based on 

their genetic information. The consent form should also describe the protections taken by the 

study to protect the privacy of participants. These may include assignment of unique numerical 

identifiers that are used to label all samples and genotypic data, procedures for securely storing 

hard copy records and electronic data, and attainment of a Certificate of Confidentiality from the 

Department of Health and Human Services. Supplementary Table 1 provides research elements 

and example consent languages for study purpose, risks/benefits, confidentiality, sample and 

information on storage and destruction. We acknowledge that there are clinical trial situations in 
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which collection of biosamples may not be feasible due to specific concerns (e.g., certain 

vulnerable population, costs)  

 

NIDA Genetics Consortium (NGC), NIDA Genetics Study Center (Biorepository), and NIH 

Resource Sharing Guidelines 

As described earlier, consortium-based biorepositories are important to enable evidence 

needed for translation. The NIDA Genetics Consortium was created in 1999 to identify human 

genes for drug addiction, create a repository of data, generate a database on genetics of drug 

use and related phenotypes, and establish a consortium of collaborating scientists.58 In 

particular, the NIDA Center for Genetics Studies (NCGS Biorepository) is a NIDA-funded 

scientific resource for informing the human molecular genetics of addiction. The Biorepository 

will produce, store, and distribute clinical data and biomaterials (DNA samples and cell lines) 

available in the NIDA Genetics Initiative.58 The Biorepository collects high-quality DNA, plasma 

(if consented), and cryopreserved lymphocytes (CPLs) on all whole blood samples submitted by 

NGC members. The sharing of data in the NCGS is done in strict accordance with the informed 

consent provided for each research subject. Many genotyping arrays are available including a 

NIDA-funded custom genotyping array for studying the genetics of addiction and treatment.59 

 

Support outside of United States 

Most high-income countries in Europe and elsewhere in the world have equivalent ethical and 

data protection procedures and legislation as in the U.S., but details vary. European data 

protection regulations are more restrictive than in the U. S., and genetic study data are typically 

deposited at the European Bioinformatics Institute (EMBL-EBI) (www.ebi.ac.uk). Clinicians 

planning to undertake such studies outside the U.S. should refer to national ethics boards and 

data protection agencies for guidance as needed. 

http://www.ebi.ac.uk/
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4. META-ANALYSIS AND HARMONIZATION 

The research is growing on treatment effect in the context of differences in participants, clinical 

trial designs and treatments using systematic reviews, traditional meta-analyses and more 

recent methods such as Bayesian, multiple treatment, multiple outcome, and network meta-

analysis. Clinical and statistical experts have estimated effect sizes of participant, clinician, and 

treatment factors on prospective abstinence using meta-analyses of randomized clinical trials of 

smoking cessation.6,60 Meta-analysis goals include utilization of the retrospective evidence base 

(e.g. based on published literature) to (1)  provide guidance to patients and clinicians,61 (2) 

evaluate effect modification, e.g., of nicotine dependence62 or genetic variants,21 on outcomes, 

and (3) develop clinical trial hypotheses for design and analysis.63  In addition, de novo 

collaborative meta-analyses, which utilize new analyses of existing data, usually with 

harmonized phenotypes and uniform analytic models, have been highly effective in aggregating 

evidence for human genetic associations, including for smoking behavioral traits.64-67 

 

Development of databases for pursuing meta-analysis of smoking cessation clinical trials 

involves identifying participant, treatment, and outcome measures from existing RCT datasets, 

comparing assessments used to obtain these data, and reviewing coding. Harmonization 

approaches to render clinical trials suitable for data analysis include expert opinion, regression 

analyses, and multiple imputation methods. The degree of harmonization between phenotypes 

in two clinical trials can be assessed if at least one of those trials contains all the information 

required to estimate the phenotype in the other trial. The degree of agreement between those 

phenotype estimates is a measure of harmonization. Multiple imputation is applicable to target 

phenotypes that are missing by design, i.e., that can be considered to be missing completely at 

random; when missing values are not missing at random, the resulting imputation of the target 
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phenotype might be biased. This situation may arise for abstinence when the subject fails to 

report abstinence because they have relapsed. The usual approach is to assume that all non-

reporting individuals have relapsed. However, this approach ignores the accessible factors that 

are related to missing data and the outcome. In such cases, it may be better to apply a 

principled method to account for the effects of the accessible mechanism.68,69 Harmonization of 

prospective abstinence outcome measures has been discussed by clinical experts.70  Interval-

censored regression is an indirect method of harmonization applicable if response categories 

differ for a group of phenotypes that are otherwise consistently measured. On the other hand, 

pharmacogenomic allele nomenclature standardization (to human reference sequence 

assemblies) contributes to the ongoing nicotine metabolism biomarker and genotype metric 

harmonization efforts.71 

 

Multiple treatment comparison meta-analysis is a form of integrated data analysis that includes 

the more familiar meta- and mega- analysis approaches and enables both direct and indirect 

comparisons of treatment effects.63,72 Direct comparisons of treatment effects take place when 

individuals are randomized to different treatments; indirect comparisons of treatment effects 

take place when analyses rely upon multiple direct comparisons to estimate the indirect 

comparison via a network. Analysis of both direct and indirect treatment effect comparisons 

increase the total sample size of the treatment comparisons and may, as in conventional meta-

analyses, identify heterogeneity between randomization arms, or between directly and indirectly 

estimated effects. Examination of modeling assumptions through simulation, sensitivity analyses 

and collaborative standardized approaches will be necessary to integrate multiple related 

patient and environmental information and extract guidance from analyses of clinical trials.  

 

5. INFORMATION ON PHENOTYPE ASSESSMENT AND CHARACTERIZATION 
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Phenotype Assessment 

The key conceptual and practical considerations for phenotyping overlap considerably with 

issues surrounding assessment of treatment efficacy. Thus, existing conventions established to 

promote the rigor and comparability of smoking cessation studies also provide useful guidance 

for phenotype assessment.70,73 

 

A common primary endpoint for cessation studies is the attainment of an extended period of 

abstinence from smoking at a distal follow-up after the quit date (typically 6 or 12 months). 

Individuals who meet these benchmarks remain at risk for relapse,74 however a lengthy period 

of sustained abstinence is the best available indicator of lifelong abstinence, the typical 

treatment goal and the outcome expected to yield the maximal health benefit. The SRNT 

workgroup on outcomes in clinical trials recommended using a “prolonged abstinence” standard, 

defined as a period of sustained abstinence following a short (i.e., 2 wk) initial grace period,70 

with point prevalence of 7-day abstinence as a secondary measure. A proposed alternative, the 

“Russell Standard Abstinence” definition, requires the conjunction of a self-report of smoking 5 

or fewer cigarettes since the quit date and a negative biochemical test at the follow-up.73 Both 

definitions incorporate allowances for a limited amount of smoking after the target quit date, 

recognizing that smoking cessation is a difficult process and temporary setbacks do not 

necessarily preclude long-term success, and that treatment delivery generally continues beyond 

the quit date. However, the various definitions are differentially sensitive to post-quit lapsing that 

occurs relatively late in the follow-up period, but that still may be effectively treated by continued 

treatment.75 In essence, the researcher must try to adopt an outcome definition that is clinically 

meaningful, mergeable across other studies, and that provides a sensitive signal of targeted 

treatment effects.  



18 

 

 

 

These conventions provide important information about ultimate clinical outcomes, but they offer 

little insight into the process of cessation or the mechanisms through which treatments exert 

their effects. One complementary approach is to focus on pivotal clinical milestones in the 

cessation process, such as the establishment of an initial period of abstinence, the occurrence 

of the first smoking lapse, and the transition from a lapse to full relapse.76 In treatment 

evaluation research, a series of survival analyses can be used to test whether treatment 

condition influences the time to each milestone, providing clues as to how effective treatments 

work.76,77 An assumption here is that these milestones are differentially sensitive to medication 

effects and their relations with omic determinants. For instance, there is some evidence that the 

effects of medication early in the quit attempt (e.g., on initial abstinence) are especially sensitive 

to medication benefit.55,64,78 

 

Another fruitful approach is to measure presumed mediators of treatment effects.78,79 The most 

relevant mediators can differ as a function of the treatment being evaluated, but a host of 

common barriers to cessation have been identified by theory and empirical investigations of 

lapse antecedents. These include urge/craving, withdrawal symptoms, exposure to tobacco 

cues, stressors, alcohol use, and reactions to lapse events80,81 In pharmacotherapy studies, 

medication compliance and drug side effects may represent important mediators of treatment 

outcome.82,83 Investigating whether treatment allocation influences these barriers to cessation, 

and testing whether group differences in long-term outcomes are mediated through effects in 

these domains, can help to refine our understanding of treatment mechanisms. There is also the 

prospect that medication effects on sensitive mediators (e.g., craving suppression) provide 

especially sensitive indices of medication benefit.84 

 



19 

 

 

Genetic studies of smoking cessation will benefit from incorporating clinical phenotypes rooted 

in each of these approaches. Long-term abstinence endpoints seem strongly indicative of the 

public health benefit of treatment, and thus clearly relevant to the development of precision 

medicine protocols. Investigating how candidate genetic markers influence clinical milestones 

and treatment mediators in addition to the traditional outcome of end of treatment abstinence 

may lead to a better understanding of their functional significance (e.g., due to differential 

contribution of error).78,85  Use of multiple outcomes may be especially valuable for positional 

candidates discovered via genome-wide scans that are not anticipated by theory and for which 

knowledge of biological function is lacking. On the other hand, increasing biological knowledge 

in genomic databases speeds the discovery process to link genes, functions, and clinical 

outcomes. Of note, is that, the causal gene and variants are not necessarily the ones closest to 

the genetic marker identified in a genome-wide screen. 

 

Anticipation of genetic analyses may encourage investigators to alter their assessment plans 

when designing cessation trials. Pooling or meta-analyzing data from many trials represents a 

powerful method for exploring genetic influences on smoking cessation. This encourages the 

use of broad and flexible assessment strategies. Ideally, clinical studies would incorporate 

detailed assessments of smoking behavior with good resolution of timing, amount, antecedents, 

and consequences of post-cessation cigarette use. Examples include calendar-based methods 

or intensive longitudinal assessments.86,87 This would allow outcomes to be scored according to 

multiple criteria (e.g. various grace periods or thresholds for progression to the relapse 

milestone), facilitating cross-trial harmonization and pooled analyses.  

 

When designing a stand-alone trial, it may make sense to assess a small set of targeted 

mediators based on a working knowledge of the treatment under study, i.e., how the tested 
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treatment is thought to work. However, the possibility of future, pooled genetic analyses should 

encourage clinical investigators to cast a wider net when it comes to assessing possible 

mediators. This alternative approach is to assess mediators based on the outcome model – 

what important factors may influence outcomes. One reason is that there is often uncertainty 

about which genetic variant(s) may eventually be tested in secondary analyses, and therefore 

the important mediator(s) may not be knowable in the trial-planning phase. A second 

consideration is that mediators thought to be irrelevant in an individual trial might be very 

important in a pooled or aggregated analysis. 

 

Increasing need for interdisciplinary collaboration and data sharing has led to initiatives such as 

the PhenX Toolkit88 and the PROMIS system89,90 designed to encourage use of consensus 

measures in health research. Going forward, the smoking cessation field might benefit from 

development and dissemination of a comparable set of standardized, flexible assessment tools 

designed to gather information on post-cessation smoking patterns, common barriers to 

cessation, variables that may mediate of treatment effects, and potentially useful intermediate 

phenotypes for genetic research.  

 

6. CONCLUSION 

In the era of ‘Precision Medicine’, it is becoming increasingly important that investigators collect 

biological samples within clinical trials and integrate their analysis and interpretation with the 

goals of the trial. The identification of genomic markers that affect response to smoking 

cessation pharmacotherapies, or susceptibility to adverse reactions to such drugs, holds real 

promise to improve smoking cessation treatment efficacy through tailored treatment 

interventions, pharmacological or behavioral. A major concern for trial design is the timing of 

genomic assessment. Available genomic data before treatment randomization will allow gene-
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based stratified randomization or experimental testing of gene-based personalized treatment, 

while collection of any biosamples at any time in the trial for subsequent genotyping is still 

beneficial. Another challenge in identifying such genomic biomarkers will be to obtain adequate 

sample sizes. Consortium-based approaches will likely be necessary to yield real successes, as 

we have seen from previous genome-wide association studies of complex traits including 

smoking behavior.64-66,91-93 Thus for pharmacogenomic studies, meta-analysis of data from 

individual smoking cessation trials will be crucial and will require comparable trial designs and 

outcomes.21,94,95 Other related topics such as the genetic effects on smoker response to non-

pharmacologic smoking cessation interventions are not included in this review. 

 

In this paper, we outline a framework for the consistent integration of biological data/samples 

into smoking cessation pharmacotherapy trials. This work aligns with the objectives of the 

recently unveiled Precision Medicine Initiative, and addresses a call for practical advice to guide 

the integration of treatment and genetics research within the nicotine and tobacco research 

community. Our goal is to encourage treatment researchers to consider biosample collection 

and genotyping their existing samples, as well as integrating genetic analyses into their study 

design. Of course, identifying an optimal pharmacogenetic strategy is highly complex, as 

treatment trials vary in study designs, the type and intensity of the counseling treatment 

provided to all groups including the placebo arm, subject inclusion/exclusion criteria, and other 

experimental methods. Still, progress is underway, as reviewed in the companion paper by 

Saccone et al.  In summary, this work encourages and provides support for study designs that 

are needed in order to realize precision medicine in treatment of nicotine dependence.96 
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Figure Legend:  

 

Figure 1.  

Title: Biological systems multi-omics from the genome, epigenome, transcriptome, proteome 

and metabolome to the phenome 

Legend: single-nucleotide polymorphism (SNP), copy number variation (CNV), micro RNA 

(miRNA). 

 

Figure 2.  

Title: Example: Benefits of nicotine replacement therapy may vary by genetic marker 

Legend: 

Blue: patients who benefit; Clear: patients who fail to benefit,21,97 both studies of European 

Ancestry. 

 

Figure 3.  

Title: Pharmacogenomic trial designs, including retrospective, prospective stratified, and 

prospective screened. Source: Adapted from Lerman, IOM workshop presentation on November 

17, 2010 
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Table 1. Pros and Cons of Biological Samples 

 

Type of 
biosample 

Primary Use Storage Pros Cons 

Whole blood Generate 
subfractions 
[plasma, serum 
and cells (for 
extraction, viable 
storage, or 
transformation)], 
and isolate nucleic 
acids, proteins, 
and metabolites. 

Ultra-low 
temperature with 
some alternative 
storage 
approaches. 

Wide variety of 
fractions and 
analytes.  
Costs proportional 
to the 
number/diversity of 
tubes drawn and 
subsequent 
processing steps. 

Requires access 
to -80C freezer. 
Need access to 
phlebotomist 
 

Saliva Isolate nucleic 
acids and proteins 
from host and from 
the meta-genome. 

Room temperature 
for saliva possible; 
ultra-low 
temperature for 
analytes. 

Ease of collection. 
Can be done 
remotely and 
mailed in. 

Lack of clinical 
observation during 
collection results in 
minor rate of 
biospecimen 
substitution. 
Quality/quantity of 
DNA lower than for 
blood. 
Contamination of 
DNA from food 
etc. 

Urine Isolate 
metabolites. 

Ultra-low 
temperature. 

24 hour urine 
collection is 
standard but 
processing urine 
volumes can be 
challenging. 

Requires access 
to -80C freezer. 
No DNA. 

Buccal Cells Isolate nucleic 
acids 

Ultra-low 
temperature. 

One tissue type 
exposed to the 
environment highly 
relevant to 
smoking/vaping 
behaviors. 

Care in selecting 
buccal sampling 
protocol for 
comparability. 

 


