311 research outputs found

    NMDA Receptor Phosphorylation at a Site Affected in Schizophrenia Controls Synaptic and Behavioral Plasticity

    Get PDF
    Phosphorylation of the NR1 subunit of NMDA receptors (NMDARs) at serine (S) 897 is markedly reduced in schizophrenia patients. However, the role of NR1 S897 phosphorylation in normal synaptic function and adaptive behaviors are unknown. To address these questions, we generated mice in which the NR1 S897 is replaced with alanine (A). This knock-in mutation causes severe impairment in NMDAR synaptic incorporation and NMDAR-mediated synaptic transmission. Furthermore, the phosphomutant animals have reduced AMPA receptor (AMPAR)-mediated synaptic transmission, decreased AMPAR GluR1 subunit in the synapse, and impaired long-term potentiation. Finally, the mutant mice exhibit behavioral deficits in social interaction and sensorimotor gating. Our results suggest that an impairment in NR1 phosphorylation leads to glutamatergic hypofunction that can contribute to behavioral deficits associated with psychiatric disorders

    No association between polymorphisms of WNT2 and schizophrenia in a Korean population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wingless-type MMTV integration site family member 2 (WNT2) has a potentially important role in neuronal development; however, there has yet to be an investigation into the association between single nucleotide polymorphisms (SNPs) of <it>WNT2 </it>and schizophrenia. This study aimed to determine whether certain SNPs of <it>WNT2 </it>were associated with schizophrenia in a Korean population.</p> <p>Methods</p> <p>e genotyped 7 selected SNPs in the <it>WNT2 </it>gene region (approximately 46 Kb) using direct sequencing in 288 patients with schizophrenia and 305 healthy controls.</p> <p>Results</p> <p>Of the SNPs examined, one SNP showed a weak association with schizophrenia (p = 0.017 in the recessive model). However, this association did not remain statistically significant after Bonferroni correction.</p> <p>Conclusion</p> <p>The present study does not support a major role for <it>WNT2 </it>in schizophrenia. This could be due to the size of the population. Therefore, additional studies would be needed to definitively rule out the gene's minor effects.</p

    Genomewide Analysis of Inherited Variation Associated with Phosphorylation of PI3K/AKT/mTOR Signaling Proteins

    Get PDF
    While there exists a wealth of information about genetic influences on gene expression, less is known about how inherited variation influences the expression and post-translational modifications of proteins, especially those involved in intracellular signaling. The PI3K/AKT/mTOR signaling pathway contains several such proteins that have been implicated in a number of diseases, including a variety of cancers and some psychiatric disorders. To assess whether the activation of this pathway is influenced by genetic factors, we measured phosphorylated and total levels of three key proteins in the pathway (AKT1, p70S6K, 4E-BP1) by ELISA in 122 lymphoblastoid cell lines from 14 families. Interestingly, the phenotypes with the highest proportion of genetic influence were the ratios of phosphorylated to total protein for two of the pathway members: AKT1 and p70S6K. Genomewide linkage analysis suggested several loci of interest for these phenotypes, including a linkage peak for the AKT1 phenotype that contained the AKT1 gene on chromosome 14. Linkage peaks for the phosphorylated:total protein ratios of AKT1 and p70S6K also overlapped on chromosome 3. We selected and genotyped candidate genes from under the linkage peaks, and several statistically significant associations were found. One polymorphism in HSP90AA1 was associated with the ratio of phosphorylated to total AKT1, and polymorphisms in RAF1 and GRM7 were associated with the ratio of phosphorylated to total p70S6K. These findings, representing the first genomewide search for variants influencing human protein phosphorylation, provide useful information about the PI3K/AKT/mTOR pathway and serve as a valuable proof of concept for studies integrating human genomics and proteomics

    PADB : Published Association Database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although molecular pathway information and the International HapMap Project data can help biomedical researchers to investigate the aetiology of complex diseases more effectively, such information is missing or insufficient in current genetic association databases. In addition, only a few of the environmental risk factors are included as gene-environment interactions, and the risk measures of associations are not indexed in any association databases.</p> <p>Description</p> <p>We have developed a published association database (PADB; <url>http://www.medclue.com/padb</url>) that includes both the genetic associations and the environmental risk factors available in PubMed database. Each genetic risk factor is linked to a molecular pathway database and the HapMap database through human gene symbols identified in the abstracts. And the risk measures such as odds ratios or hazard ratios are extracted automatically from the abstracts when available. Thus, users can review the association data sorted by the risk measures, and genetic associations can be grouped by human genes or molecular pathways. The search results can also be saved to tab-delimited text files for further sorting or analysis. Currently, PADB indexes more than 1,500,000 PubMed abstracts that include 3442 human genes, 461 molecular pathways and about 190,000 risk measures ranging from 0.00001 to 4878.9.</p> <p>Conclusion</p> <p>PADB is a unique online database of published associations that will serve as a novel and powerful resource for reviewing and interpreting huge association data of complex human diseases.</p

    Kidney growth curves in healthy children from the third trimester of pregnancy until the age of two years. The Generation R Study

    Get PDF
    Information about growth of kidney structures in early life is limited. In a population-based prospective cohort study, from foetal life onwards, we constructed reference curves for kidney growth from the third trimester of pregnancy until early childhood, using data from 1,158 healthy children. Kidney size, defined as length, width, depth and volume, was measured in the third trimester of pregnancy and at the postnatal ages of 6 months and 24 months. Analyses were based on more than 2,500 kidney measurements. In the third trimester of pregnancy and at 6 months of age all kidney measurements were larger in boys than in girls. At 24 months of age, these gender differences were only significant for left kidney structures and right kidney length. Both groups showed trends towards smaller left kidney measurements than right kidney measurements at all ages. Gender-specific reference curves based on post-conceptional and postnatal ages were constructed for left and right kidney length, width, depth and volume. We concluded that kidney size is influenced by age and gender. Left kidney size tended to be smaller than right kidney size, except for kidney length. The reference curves can be used for assessing kidney structures by ultrasound in foetal life and early childhood

    Partial Loss of Ataxin-1 Function Contributes to Transcriptional Dysregulation in Spinocerebellar Ataxia Type 1 Pathogenesis

    Get PDF
    Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a CAG repeat that encodes a polyglutamine tract in ATAXIN1 (ATXN1). Molecular and genetic data indicate that SCA1 is mainly caused by a gain-of-function mechanism. However, deletion of wild-type ATXN1 enhances SCA1 pathogenesis, whereas increased levels of an evolutionarily conserved paralog of ATXN1, Ataxin 1-Like, ameliorate it. These data suggest that a partial loss of ATXN1 function contributes to SCA1. To address this possibility, we set out to determine if the SCA1 disease model (Atxn1154Q/+ mice) and the loss of Atxn1 function model (Atxn1βˆ’/βˆ’ mice) share molecular changes that could potentially contribute to SCA1 pathogenesis. To identify transcriptional changes that might result from loss of function of ATXN1 in SCA1, we performed gene expression microarray studies on cerebellar RNA from Atxn1βˆ’/βˆ’ and Atxn1154Q/+ cerebella and uncovered shared gene expression changes. We further show that mild overexpression of Ataxin-1-Like rescues several of the molecular and behavioral defects in Atxn1βˆ’/βˆ’ mice. These results support a model in which Ataxin 1-Like overexpression represses SCA1 pathogenesis by compensating for a partial loss of function of Atxn1. Altogether, these data provide evidence that partial loss of Atxn1 function contributes to SCA1 pathogenesis and raise the possibility that loss-of-function mechanisms contribute to other dominantly inherited neurodegenerative diseases
    • …
    corecore