61,798 research outputs found
DIRBE Minus 2MASS: Confirming the CIRB in 40 New Regions at 2.2 and 3.5 Microns
With the release of the 2MASS All-Sky Point Source Catalog, stellar fluxes
from 2MASS are used to remove the contribution due to Galactic stars from the
intensity measured by DIRBE in 40 new regions in the North and South Galactic
polar caps. After subtracting the interplanetary and Galactic foregrounds, a
consistent residual intensity of 14.69 +/- 4.49 kJy/sr at 2.2 microns is found.
Allowing for a constant calibration factor between the DIRBE 3.5 microns and
the 2MASS 2.2 microns fluxes, a similar analysis leaves a residual intensity of
15.62 +/- 3.34 kJy/sr at 3.5 microns. The intercepts of the DIRBE minus 2MASS
correlation at 1.25 microns show more scatter and are a smaller fraction of the
foreground, leading to a still weak limit on the CIRB of 8.88 +/- 6.26 kJy/sr
(1 sigma).Comment: 25 pages LaTeX, 10 figures, 5 tables; Version accepted by the ApJ.
Includes minor changes to the text including further discussion of zodiacal
light issues and the allowance for variable stars in computing uncertainties
in the stellar contribution to the DIRBE intensitie
Penetrating radiation system for detecting the amount of liquid in a tank Patent
Radiation source and detection system for measuring amount of liquid inside tanks independently of liquid configuratio
Recommended from our members
Confidence: Its role in dependability cases for risk assessment
Society is increasingly requiring quantitative assessment of risk and associated dependability cases. Informally, a dependability case comprises some reasoning, based on assumptions and evidence, that supports a dependability claim at a particular level of confidence. In this paper we argue that a quantitative assessment of claim confidence is necessary for proper assessment of risk. We discuss the way in which confidence depends upon uncertainty about the underpinnings of the dependability case (truth of assumptions, correctness of reasoning, strength of evidence), and propose that probability is the appropriate measure of uncertainty. We discuss some of the obstacles to quantitative assessment of confidence (issues of composability of subsystem claims; of the multi-dimensional, multi-attribute nature of dependability claims; of the difficult role played by dependence between different kinds of evidence, assumptions, etc). We show that, even in simple cases, the confidence in a claim arising from a dependability case can be surprisingly low
Superpositions in Atomic Quantum Rings
Ultracold atoms are trapped circumferentially on a ring that is pierced at
its center by a flux tube arising from a light-induced gauge potential due to
applied Laguerre-Gaussian fields. We show that by using optical coherent state
superpositions to produce light-induced gauge potentials, we can create a
situation in which the trapped atoms are simultaneously exposed to two distinct
flux tubes, thereby creating superpositions in atomic quantum rings. We
consider the examples of both a ring geometry and harmonic trapping, and in
both cases the ground state of the quantum system is shown to be a
superposition of counter-rotating states of the atom trapped on the two
distinct flux tubes.Comment: 11 pages, 6 figure
Do elliptical galaxies have thick disks?
The authors discuss new evidence which supports the existence of thick disks in elliptical/SO galaxies. Numerical simulations of weak interactions with thick disk systems produce shell structures very similar in appearance to those observed in many shell galaxies. The authors think this model presents a more plausible explanation for the formation of shell structures in elliptical/SO galaxies than does the merger model and, if correct, supports the existence of thick disks in elliptical/SO galaxies
Fluidic hydrogen detector production prototype development
A hydrogen gas sensor that can replace catalytic combustion sensors used to detect leaks in the liquid hydrogen transfer systems at Kennedy Space Center was developed. A fluidic sensor concept, based on the principle that the frequency of a fluidic oscillator is proportional to the square root of the molecular weight of its operating fluid, was utilized. To minimize sensitivity to pressure and temperature fluctuations, and to make the sensor specific for hydrogen, two oscillators are used. One oscillator operates on sample gas containing hydrogen, while the other operates on sample gas with the hydrogen converted to steam. The conversion is accomplished with a small catalytic converter. The frequency difference is taken, and the hydrogen concentration computed with a simple digital processing circuit. The output from the sensor is an analog signal proportional to hydrogen content. The sensor is shown to be accurate and insensitive to severe environmental disturbances. It is also specific for hydrogen, even with large helium concentrations in the sample gas
Multiplex evaluation of influenza neutralizing antibodies with potential applicability to in-field serological studies
The increased number of outbreaks of H5 and H7 LPAI and HPAI viruses in poultry has major public and animal health implications. The continuous rapid evolution of these subtypes and the emergence of new variants influence the ability to undertake effective surveillance.
Retroviral pseudotypes bearing influenza haemagglutinin (HA) and neuraminidase (NA) envelope glycoproteins represent a flexible platform for sensitive, readily standardized influenza serological assays. We describe a multiplex assay for the study of neutralizing antibodies that are directed against both influenza H5 and H7 HA. This assay permits the measurement of neutralizing antibody responses against two antigenically distinct HAs in the same serum/plasma sample thus increasing the amount and quality of serological data that can be acquired from valuable sera. Sera obtained from chickens vaccinated with a monovalent H5N2 vaccine, chickens vaccinated with a bivalent H7N1/H5N9 vaccine, or turkeys naturally infected with an H7N3 virus were evaluated in this assay and the results correlated strongly with data obtained by HI assay. We show that pseudotypes are highly stable under basic cold-chain storage conditions and following multiple rounds of freeze-thaw. We propose that this robust assay may have practical utility for in-field sero-surveillance and vaccine studies in resource-limited regions worldwide
- …