61 research outputs found
Economic Viability of the Use of Local Pseudo-Oils for Drilling Fluid Formulation
The initial cost of formulating Synthetic Base Muds (SBM) compared to conventional Oil Base Muds (OBM) may be doubled but after considering the cost of containment, hauling, and disposal of OBM after use, the cost of using SBM becomes relatively cheaper. The formulation and disposal options (onshore and offshore) and the cost benefit of using seven local antioxidated pseudo-oils (vegetable esters) SBM compared to commercial OBM at an average offshore and onshore temperature operations were simulated in this work using API standard performance benchmarks. The average cost percent of savings on the use of the seven local vegetable oils over the use of commercial synthetic base fluid offshore and onshore were 48.32% and 56.30% respectively. Thus the use of local ester oils for drilling fluids formulation are more economical compared to currently imported oil based drilling fluids. The cultivation and production of these local pseudo-oils are on the increase guaranteeing its adoption and application to be very sustainable.Keywords: Antioxidants, Disposals, Economics, Esters, Formulation
Risks for Central Nervous System Diseases among Mobile Phone Subscribers: A Danish Retrospective Cohort Study
The aim of this study was to investigate a possible link between cellular telephone use and risks for various diseases of the central nervous system (CNS). We conducted a large nationwide cohort study of 420 095 persons whose first cellular telephone subscription was between 1982 and 1995, who were followed through 2003 for hospital contacts for a diagnosis of a CNS disorder. Standardized hospitalization ratios (SHRs) were derived by dividing the number of hospital contacts in the cohort by the number expected in the Danish population. The SHRs were increased by 10–20% for migraine and vertigo. No associations were seen for amyotrophic lateral sclerosis, multiple sclerosis or epilepsy in women. SHRs decreased by 30–40% were observed for dementia (Alzheimer disease, vascular and other dementia), Parkinson disease and epilepsy among men. In analyses restricted to subscribers of 10 years or more, the SHRs remained similarly increased for migraine and vertigo and similarly decreased for Alzheimer disease and other dementia and epilepsy (in men); the other SHRs were close to unity. In conclusion, the excesses of migraine and vertigo observed in this first study on cellular telephones and CNS disease deserve further attention. An interplay of a healthy cohort effect and reversed causation bias due to prodromal symptoms impedes detection of a possible association with dementia and Parkinson disease. Identification of the factors that result in a healthy cohort might be of interest for elucidation of the etiology of these diseases
Structure of a highly conserved domain of rock1 required for shroom-mediated regulation of cell morphology
Rho-associated coiled coil containing protein kinase (Rho-kinase or Rock) is a well-defined determinant of actin organization and dynamics in most animal cells characterized to date. One of the primary effectors of Rock is non-muscle myosin II. Activation of Rock results in increased contractility of myosin II and subsequent changes in actin architecture and cell morphology. The regulation of Rock is thought to occur via autoinhibition of the kinase domain via intramolecular interactions between the N-terminus and the C-terminus of the kinase. This autoinhibited state can be relieved via proteolytic cleavage, binding of lipids to a Pleckstrin Homology domain near the C-terminus, or binding of GTP-bound RhoA to the central coiled-coil region of Rock. Recent work has identified the Shroom family of proteins as an additional regulator of Rock either at the level of cellular distribution or catalytic activity or both. The Shroom-Rock complex is conserved in most animals and is essential for the formation of the neural tube, eye, and gut in vertebrates. To address the mechanism by which Shroom and Rock interact, we have solved the structure of the coiled-coil region of Rock that binds to Shroom proteins. Consistent with other observations, the Shroom binding domain is a parallel coiled-coil dimer. Using biochemical approaches, we have identified a large patch of residues that contribute to Shrm binding. Their orientation suggests that there may be two independent Shrm binding sites on opposing faces of the coiled-coil region of Rock. Finally, we show that the binding surface is essential for Rock colocalization with Shroom and for Shroom-mediated changes in cell morphology. © 2013 Mohan et al
Immunological challenges associated with artificial skin grafts: available solutions and stem cells in future design of synthetic skin
Abstract The repair or replacement of damaged skins is still an important, challenging public health problem. Immune acceptance and long-term survival of skin grafts represent the major problem to overcome in grafting given that in most situations autografts cannot be used. The emergence of artificial skin substitutes provides alternative treatment with the capacity to reduce the dependency on the increasing demand of cadaver skin grafts. Over the years, considerable research efforts have focused on strategies for skin repair or permanent skin graft transplantations. Available skin substitutes include pre- or post-transplantation treatments of donor cells, stem cell-based therapies, and skin equivalents composed of bio-engineered acellular or cellular skin substitutes. However, skin substitutes are still prone to immunological rejection, and as such, there is currently no skin substitute available to overcome this phenomenon. This review focuses on the mechanisms of skin rejection and tolerance induction and outlines in detail current available strategies and alternatives that may allow achieving full-thickness skin replacement and repair
The anti-microbial peptide TP359 attenuates inflammation in human lung cells infected with Pseudomonas aeruginosa via TLR5 and MAPK pathways.
Pseudomonas aeruginosa infection induces vigorous inflammatory mediators secreted by epithelial cells, which do not necessarily eradicate the pathogen. Nonetheless, it reduces lung function due to significant airway damage, most importantly in cystic fibrosis patients. Recently, we published that TP359, a proprietary cationic peptide had potent bactericidal effects against P. aeruginosa, which were mediated by down-regulating its outer membrane biogenesis genes. Herein, we hypothesized that TP359 bactericidal effects could also serve to regulate P. aeruginosa-induced lung inflammation. We explored this hypothesis by infecting human A549 lung cells with live P. aeruginosa non-isogenic, mucoid and non-mucoid strains and assessed the capacity of TP359 to regulate the levels of elicited TNFα, IL-6 and IL-8 inflammatory cytokines. In all instances, the mucoid strain elicited higher concentrations of cytokines in comparison to the non-mucoid strain, and TP359 dose-dependently down-regulated their respective levels, suggesting its regulation of lung inflammation. Surprisingly, P. aeruginosa flagellin, and not its lipopolysaccharide moiety, was the primary inducer of inflammatory cytokines in lung cells, which were similarly down-regulated by TP359. Blocking of TLR5, the putative flagellin receptor, completely abrogated the capacity of infected lung cells to secrete cytokines, underscoring that TP359 regulates inflammation via the TLR5-dependent signaling pathway. Downstream pathway-specific inhibition studies further revealed that the MAPK pathway, essentially p38 and JNK are necessary for induction of P. aeruginosa elicited inflammatory cytokines and their down-regulation by TP359. Collectively, our data provides evidence to support exploring the relevancy of TP359 as an anti-microbial and anti-inflammatory agent against P. aeruginosa for clinical applications
- …