55 research outputs found

    Introducing Multiple Interest rates in ToTEM

    Get PDF
    This article describes changes to the structure of ToTEM—the Bank of Canada’s main model for projection and policy analysis—that allow an independent role for long-term interest rates, as well as for the risk spreads that lead to differences in the interest rates faced by households, firms and the government. These changes broaden the range of policy questions that the model can address and improve its ability to explain data. The authors use the model to simulate the effects of shocks to the risk spreads on interest rates similar to those that occurred during the recent financial crisis. They also use the model to assess the macroeconomic impact of higher requirements for bank capital and liquidity.

    Magnetic states of linear defects in graphene monolayers: effects of strain and interaction

    Full text link
    The combined effects of defect-defect interaction and of uniaxial or biaxial strains of up to 10\% on the development of magnetic states on the defect-core-localized quasi-one-dimensional electronic states generated by the so-called 558 linear extended defect in graphene monolayers are investigated by means of {\it ab initio} calculations. Results are analyzed on the basis of the heuristics of the Stoner criterion. We find that conditions for the emergence of magnetic states on the 558 defect can be tuned by uniaxial tensile parallel strains (along the defect direction) at both limits of isolated and interacting 558 defects. Parallel strains are shown to lead to two cooperative effects that favor the emergence of itinerant magnetism: enhancement of the DOS of the resonant defect states in the region of the Fermi level and tuning of the Fermi level to the maximum of the related DOS peak. A perpendicular strain is likewise shown to enhance the DOS of the defect states, but it also effects a detunig of the Fermi level that shifts away from the maximum of the DOS of the defect states, which inhibts the emergence of magnetic states. As a result, under biaxial strains the stabilization of a magnetic state depends on the relative magnitudes of the two components of strain.Comment: 9 pages 8 figure

    Initial soil conditions outweigh management in a cool-season dairy farm\u27s carbon sequestration potential

    Get PDF
    Pastures and rangelands are a dominant portion of global agricultural land and have the potential to sequester carbon (C) in soils, mitigating climate change. Management intensive grazing (MIG), or high density grazing with rotations through paddocks with long rest periods, has been highlighted as a method of enhancing soil C in pastures by increasing forage production. However, few studies have examined the soil C storage potential of pastures under MIG in the northeastern United States, where the dairy industry comprises a large portion of agricultural use and the regional agricultural economy. Here we present a 12-year study conducted in this region using a combination of field data and the denitrification and decomposition (DNDCv9.5) model to analyze changes in soil C and nitrogen (N) over time, and the climate impacts as they relate to soil carbon dioxide (CO2) and nitrous oxide (N2O) fluxes. Field measurements showed: (1) increases in soil C in grazed fields under MIG (P = 0.03) with no significant increase in hayed fields (P = 0.55); and (2) that the change in soil C was negatively correlated to initial soil C content (P = 0.006). Modeled simulations also showed fields that started with relatively less soil C had significant gains in C over the course of the study, with no significant change in fields with higher initial levels of soil C. Sensitivity analyses showed the physiochemical status of soils (i.e., soil C and clay content) had greater influence over C storage than the intensity of grazing. More extensive grazing methods showed very little change in soil C storage or CO2 and N2O fluxes with modeled continuous grazing trending towards declines in soil C. Our study highlights the importance of considering both initial system conditions as well as management when analyzing the potential for long-term soil C storage

    Global Research Alliance N2 O chamber methodology guidelines:Introduction, with health and safety considerations

    Get PDF
    Non-steady-state (NSS) chamber techniques have been used for decades to measure nitrous oxide (N₂O) fluxes from agricultural soils. These techniques are widely used because they are relatively inexpensive, easy to adopt, versatile, and adaptable to varying conditions. Much of our current understanding of the drivers of N₂O emissions is based on studies using NSS chambers. These chamber techniques require decisions regarding multiple methodological aspects (e.g., chamber materials and geometry, deployment, sample analysis, and data and statistical analysis), each of which may significantly affect the results. Variation in methodological details can lead to challenges in comparing results between studies and assessment of reliability and uncertainty. Therefore, the New Zealand Government, in support of the objectives of the Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse Gases (GRA), funded two international projects to, first, develop standardized guidelines on the use of NSS chamber techniques and, second, refine them based on the most up to date knowledge and methods. This introductory paper summarizes a collection of papers that represent the revised guidelines. Each article summarizes existing knowledge and provides guidance and minimum requirements on chamber design, deployment, sample collection, storage and analysis, automated chambers, flux calculations, statistical analysis, emission factor estimation and data reporting, modeling, and “gap-filling” approaches. The minimum requirements are not meant to be highly prescriptive but instead provide researchers with clear direction on best practices and factors that need to be considered. Health and safety considerations of NSS chamber techniques are also provided with this introductory paper

    Evaluating the Potential of Legumes to Mitigate N2_{2}O Emissions From Permanent Grassland Using Process-Based Models

    Get PDF
    A potential strategy for mitigating nitrous oxide (N2_{2}O) emissions from permanent grasslands is the partial substitution of fertilizer nitrogen (Nfert_{fert}) with symbiotically fixed nitrogen (Nsymb_{symb}) from legumes. The input of Nsymb_{symb} reduces the energy costs of producing fertilizer and provides a supply of nitrogen (N) for plants that is more synchronous to plant demand than occasional fertilizer applications. Legumes have been promoted as a potential N2_{2}O mitigation strategy for grasslands, but evidence to support their efficacy is limited, partly due to the difficulty in conducting experiments across the large range of potential combinations of legume proportions and fertilizer N inputs. These experimental constraints can be overcome by biogeochemical models that can vary legume‐fertilizer combinations and subsequently aid the design of targeted experiments. Using two variants each of two biogeochemical models (APSIM and DayCent), we tested the N2_{2}O mitigation potential and productivity of full factorial combinations of legume proportions and fertilizer rates for five temperate grassland sites across the globe. Both models showed that replacing fertilizer with legumes reduced N2_{2}O emissions without reducing productivity across a broad range of legume‐fertilizer combinations. Although the models were consistent with the relative changes of N2_{2}O emissions compared to the baseline scenario (200 kg N ha1^{-1} yr1^{-1}; no legumes), they predicted different levels of absolute N2_{2}O emissions and thus also of absolute N2_{2}O emission reductions; both were greater in DayCent than in APSIM. We recommend confirming these results with experimental studies assessing the effect of clover proportions in the range 30–50% and ≤150 kg N ha1^{-1} yr1^{-1} input as these were identified as best‐bet climate smart agricultural practices

    pH regulation in anoxic rice coleoptiles at pH 3.5: biochemical pHstats and net H+ influx in the absence and presence of NO3−

    Get PDF
    During anoxia, cytoplasmic pH regulation is crucial. Mechanisms of pH regulation were studied in the coleoptile of rice exposed to anoxia and pH 3.5, resulting in H+ influx. Germinating rice seedlings survived a combination of anoxia and exposure to pH 3.5 for at least 4 d, although development was retarded and net K+ efflux was continuous. Further experiments used excised coleoptile tips (7–10 mm) in anoxia at pH 6.5 or 3.5, either without or with 0.2 mM NO3−, which distinguished two processes involved in pH regulation. Net H+ influx (μmol g−1 fresh weight h−1) for coleoptiles with NO3− was ∼1.55 over the first 24 h, being about twice that in the absence of NO3−, but then decreased to 0.5–0.9 as net NO3− uptake declined from ∼1.3 to 0.5, indicating reduced uptake via H+–NO3− symports. NO3− reduction presumably functioned as a biochemical pHstat. A second biochemical pHstat consisted of malate and succinate, and their concentrations decreased substantially with time after exposure to pH 3.5. In anoxic coleoptiles, K+ balancing the organic anions was effluxed to the medium as organic anions declined, and this efflux rate was independent of NO3− supply. Thus, biochemical pHstats and reduced net H+ influx across the plasma membrane are important features contributing to pH regulation in anoxia-tolerant rice coleoptiles at pH 3.5
    corecore