22 research outputs found

    Correlation functions of the chiral stress-tensor multiplet in N=4 SYM

    Get PDF
    We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve only propagators and no integration vertices. We use this unusual feature of the twistor Feynman rules to compute the correlation functions in terms of simple building blocks which we identify as a new class of N=4 off-shell superconformal invariants. Making use of the duality between correlation functions and planar scattering amplitudes, we demonstrate that these invariants represent an off-shell generalisation of the on-shell invariants defining tree-level scattering amplitudes in N=4 SYM

    Perturbative four-point functions from the analytic conformal bootstrap

    Get PDF
    We apply the analytic conformal bootstrap method to study weakly coupled conformal gauge theories in four dimensions. We employ twist conformal blocks to find the most general form of the one-loop four-point correlation function of identical scalar operators, without any reference to Feynman calculations. The method relies only on symmetries of the model. In particular, it does not require introducing any regularisation and it is free from the redundancies usually associated with the Feynman approach. By supplementing the general solution with known data for a small number of operators, we recover explicit forms of one-loop correlation functions of four Konishi operators as well as of four half-BPS operators O20′\mathcal{O}_{20'} in N=4\mathcal{N}=4 super Yang-Mills
    corecore