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1 Introduction

In recent years we have substantially advanced our understanding of conformal field theories

(CFT) in dimensions higher than two. Most of the progress comes from the conformal

bootstrap approach to CFTs. One successful development is the numerical study of the

conformal bootstrap equation [1] which allowed to find approximate conformal dimensions

of a large family of operators, most significantly in the 3d Ising model [2]. Remarkably,

analytic methods to solve the bootstrap equation have also been developed recently [3–6].

They rely on the fact that the large spin sector of a generic CFT is essentially free. This

allows to study the problem as a perturbation theory around infinite spin. An appropriate

description is then given by twist conformal blocks [7], which resum contributions from

all operators with identical classical twist. This reduces the crossing equation to a set of

algebraic relations for the CFT data, i.e. conformal dimensions and structure constants

for all operators in the theory. Twist conformal blocks have already been successfully used

for several theories with slightly broken higher spin symmetry [8], as well as in the large-N

expansion of N = 4 super Yang-Mills (SYM) [9].

In this paper we apply this method to weakly coupled conformal field theories in four

space-time dimensions. We study four-point correlation functions

G(x) = (x2
12x

2
34)∆O〈O(x1)O(x2)O(x3)O(x4)〉 (1.1)

of identical operators built out of fundamental scalar fields of the theory in the small

coupling g expansion. Here, ∆O is the conformal dimension of the operator O and xij
denotes the distance between two space-time points. A prototypical example of such the-

ory is N = 4 SYM. In order to focus our attention we will discuss two very particular

scalar operators in N = 4 SYM: the Konishi operator K and the half-BPS operator O20′

in the [0, 2, 0] representation of the SU(4) R-symmetry. Both of them are the simplest

gauge invariant scalar operators and have the schematic form O = Tr(φ2), where φ is a

fundamental scalar field of the theory. The methods developed here will however apply to

a large class of conformal field theories satisfying a set of assumptions spelled out at the

end of this section.

In the following we study four-point correlation functions in the perturbation theory

around vanishing coupling constant g = 0,

G(x) = G(0)(x) + g G(1)(x) + . . . . (1.2)

The leading-order answers G(0)(x) can be found by directly performing Wick contractions

and depend on a single parameter related to the central charge of the theory. In this

paper we focus most of our attention on the one-loop function G(1)(x) and find its gen-

eral form using only the conformal symmetry, crossing symmetry and the structure of the

operator product expansion (OPE). In the two cases that we study we find a family of

crossing-symmetric solutions which depend on a small number of free parameters. The

most transcendental part of the answer is given by the so-called box function times a ra-

tional function. These has to be supplemented by lower transcendental functions. We find
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the explicit form of these functions without referring to Feynman diagram calculations. In

particular, we will avoid introducing any regularisation or any redundancies fundamentally

bound to the Feynman approach. In order to find a particular four-point correlator we sup-

plement our general solution with a few explicit values of the CFT data for operators with

small classical conformal dimension and spin. These can be found in the literature [10–12].

Our method will be based on only a few assumptions:

• We study unitary weakly coupled conformal gauge theories in four dimensions. In

particular, unitarity implies that the operators in the OPE expansion satisfy the

unitarity bound and have non-negative (squared) OPE coefficient with O = Tr(φ2).

Moreover, the fact that we study gauge theories implies that the fundamental field φ

is not part of the spectrum, and therefore the correlator of O provides the strongest

constraint on the CFT-data.

• We assume that infinite towers of operators parametrised by spin ` have a regular

expansion of the CFT data at large spin, i.e. the CFT data can be written as a

Taylor expansion of 1
` with possible log ` insertions.

Furthermore we will use the following properties of conformal field theories:

• We use the fact that four-point correlation functions are crossing symmetric.

• We use the knowledge of the OPE structure. Furthermore, we rely on an explicit

form of the conformal blocks in four dimensions and the superconformal blocks for

the half-BPS operators O20′ in N = 4 SYM.

It was already found in [13, 14] that there exists a class of crossing symmetric solutions

which correspond to CFT data that is truncated in spin. In particular, the instanton

solutions are of this type, as shown in [15]. Our analysis extends these results by including

also solutions unbounded in spin. Since crossing at one loop in perturbation theory is a

linear problem, we can treat these two types of solutions separately and focus only on

the latter.

The paper is organised as follows: in section 2 we collect basic information about four-

point correlation functions and their properties. In section 3 we introduce the notion of

twist conformal blocks and H-functions and study their properties. In section 4 we use H-

functions to find a family of solutions to the conformal bootstrap equation and in particular

recover the known form of the four-point correlator of Konishi operators. In section 5 we

repeat the analysis from the previous two sections in the case of the correlation function

of four half-BPS operators O20′ in N = 4 SYM. We end the paper with conclusions and

outlook and supplement it with a few appendices containing the more technical ingredients

of our results.

2 Four-point correlators

In this section we collect all relevant information about four-point correlation functions

of operators that we will study in the rest of this paper. In the first part we describe
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four-point correlators of four identical scalar operators with classical dimension ∆0 = 2.

This is relevant for the Konishi operator in N = 4 SYM, which is of the form

K(x) = Tr(φI(x)φI(x)), (2.1)

where I is the SO(6) R-symmetry index. We study the correlation function of four Konishi

operators using the ordinary conformal partial wave decomposition in four dimensions [16].

In the second part we study the N = 4 SYM half-BPS operator in the [0, 2, 0] = 20′

representation of the SU(4) R-symmetry

O20′(x, y) = yI yJ Tr(φI(x)φJ(x)) , (2.2)

where we have introduced an auxiliary six-dimensional complex null vector yI , namely

y ·y ≡ yIyI = 0. In order to properly accommodate for a non-trivial R-symmetry structure

of the correlation function of four half-BPS operators we employ superconformal blocks

introduced in [17].

2.1 Conformal partial wave decomposition for Konishi operators

First, let us consider the case relevant for the Konishi operator K, namely a scalar operator

with the conformal dimension

∆K = 2 +

∞∑
i=1

γ
(i)
K gi . (2.3)

From conformal invariance the four-point correlator of identical scalar operators takes

the form

〈K(x1)K(x2)K(x3)K(x4)〉 =
G(u, v)

x2∆K
12 x2∆K

34

, (2.4)

where the cross-ratios u and v are defined by1

u = x1 x2 =
x2

12x
2
34

x2
13x

2
24

, v = (1− x1)(1− x2) =
x2

14x
2
23

x2
13x

2
24

. (2.5)

In the following we will use both sets of cross-ratios (u, v) and (x1, x2) interchangeably.

Crossing symmetry demands that the four-point function (2.4) is invariant under exchange

of positions of any two operators. Since we study four identical operators, it leads to two

independent conditions satisfied by the correlation function (2.4):

G(u, v) = G
(
u

v
,

1

v

)
, v∆KG(u, v) = u∆KG(v, u) . (2.6)

In the following, we will solve these equations and study their solutions as perturbations

around small u ∼ 0 and v ∼ 0, corresponding to x1 ∼ 0 and x2 ∼ 1. While the first

equation in (2.6) can easily be expanded using the conformal partial wave decomposition,

the second equation has to be treated more carefully. In order to do that we will need

to employ the twist conformal blocks introduced in [7]. We refer to the second equation

in (2.6) as the conformal bootstrap equation.

1In this paper we use the symbols x1 and x2 instead of the more standard notation z and z̄.
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Figure 1. Wick contractions relevant for the tree-level calculation.

The conformally invariant function G(u, v) entering (2.4) admits a decomposition into

conformal partial waves obtained by considering the OPE expansion in the limit x1 → x2

G(u, v) =
∑
τ,`,i

aτ,`,iGτ,`(u, v). (2.7)

Here the sum runs over all conformal primaries of twist τ = ∆−`, where ∆ is the conformal

dimension, and even spin ` present in the OPE decomposition of two Konishi operators

K ×K ∼
∑
τ,`,i

CKKOτ,`,i (Oτ,`,i + . . .) , (2.8)

where the . . . stands for contributions from descendants of Oτ,`,i. The index i = 1, . . . , dτ0,`
runs over a possible additional degeneracy in the spectrum of operators with a given twist

and spin. We denoted the square of OPE coefficients by aτ,`,i = C2
KKOτ,`,i . The conformal

blocks Gτ,`(u, v), which resum contributions coming from all descendants of a given con-

formal primary operator, can be found explicitly for four dimensions [16]. For even spins

they take the following form

Gτ,`(x1, x2) =
x1x2

x1 − x2

(
k τ

2
+`(x1)k τ

2
−1(x2)− k τ

2
+`(x2)k τ

2
−1(x1)

)
, (2.9)

where kβ(x) = xβ2F1(β, β, 2β; x) and 2F1(a, b, c; x) is a hypergeometric function. It is easy

to check that each conformal block satisfies the first equation in (2.6).

On the other hand, in perturbative conformal gauge theories the four-point func-

tion (2.4) admits a small coupling expansion

G(u, v) = G(0)(u, v) + g G(1)(u, v) + . . . , (2.10)

where g is the gauge coupling. The tree level term can be directly evaluated using Wick

contractions in the free theory as in figure 1 and renders

G(0)(u, v) =

(
1 + u2 +

u2

v2

)
+ c

(
u+

u

v
+
u2

v

)
, (2.11)

where c is a theory-dependent constant which for example for N = 4 SYM with gauge group

SU(N) is proportional to the inverse of the central charge, c ∼ (N2−1)−1. Performing the

conformal partial wave decomposition we find that for each classical twist τ0 = 2, 4, 6, . . .

there exists an infinite tower of operators contributing to the sum in (2.7), labelled by spin

` and degeneracy index i. This twist degeneracy will be partially lifted in the next sections,

when we include perturbative corrections to the four-point correlator. Using the conformal
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partial wave decomposition of (2.11) we can compute the tree-level structure constants.

They are non-zero only for even spins ` and take the form

〈a(0)
τ0,`
〉 =


2c

Γ(`+
τ0
2

)2

Γ(2`+τ0−1) , τ0 = 2 ,

2
Γ(
τ0
2
−1)2Γ(

τ0
2

+`)2

Γ(τ0−3)Γ(τ0+2`−1)

(
c (−1)

τ0
2 + (τ0 + `− 2)(`+ 1)

)
, τ0 > 2 ,

(2.12)

where we have introduced an average of structure constants over operators with the same

classical twist and spin, 〈a(0)
τ0,`
〉 ≡

∑
i a

(0)
τ0,`,i

. Notice that from the correlator (2.11) alone it

is not possible to calculate individual structure constants by this procedure.

In the following sections we will find the most general one-loop correction to (2.11)

using the conformal symmetry, crossing symmetry and the structure of the OPE. In par-

ticular, we will compute an explicit form of the perturbative corrections to the structure

constants 〈a(0)
τ0,`
〉 → 〈a(0)

τ0,`
〉 + g〈a(1)

τ0,`
〉 as well as to the twists τ0 → τ0 + g

〈a(0)τ0,`γ
(1)
τ0,`
〉

〈a(0)τ0,`〉
. The

knowledge of results for individual operators Oτ,`,i will not be necessary to find the com-

plete four-point correlator at one loop, they will become relevant only at the two-loop

order. We will comment on this matter in the outlook of this paper.

2.2 Superconformal partial wave decomposition for half-BPS operators

As the second example, we consider the four-point correlation function of four half-BPS

operators O20′ in N = 4 SYM, which are protected and their dimension is ∆O20′ = 2.

The four-point correlation function of such operators decompose into the following two

contributions

〈O20′(x1, y1)O20′(x2, y2)O20′(x3, y3)O20′(x4, y4)〉 = GBorn(x, y) + Gpert(x, y), (2.13)

where Gpert(x, y) vanishes when g → 0. The part GBorn(x, y) corresponds to the Born

approximation and is a rational function of space time and R-symmetry coordinates. Again,

it can be evaluated directly by Wick contractions and it boils down to the same set of graphs

as in figure 1. It renders

GBorn(x, y) = d2
12d

2
34 + d2

13d
2
24 + d2

14d
2
23 + c̃

(
d12d23d34d14 + d12d24d34d13 + d13d24d23d14

)
,

(2.14)

where the superpropagator dij is given by

dij =
y2
ij

x2
ij

, yij = yi · yj , (2.15)

and c̃ is a theory-dependent constant which for SU(N) N = 4 SYM again depends only on

the central charge c̃ ∼ (N2 − 1)−1.

From the superconformal Ward identities [18], the interacting part of the four-point

function can be written in a factorised form

Gpert(x, y) = d2
12d

2
34

(x1 − y1)(x1 − y2)(x2 − y1)(x2 − y2)

(y1 y2)2
H(u, v) , (2.16)

– 5 –
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where we have introduced a set of cross-ratios for the R-symmetry coordinates

y1y2 =
y2

12y
2
34

y2
13y

2
24

, (1− y1)(1− y2) =
y2

14y
2
23

y2
13y

2
24

. (2.17)

Similar to the four-point function of Konishi operators, crossing symmetry implies that the

function H(u, v) satisfies the two equations

H(u, v) =
1

v2
H
(
u

v
,

1

v

)
, v2H(u, v) = u2H(v, u) , (2.18)

where in the second equation we used explicitly the fact that ∆O20′ = 2.

On the other hand, the four-point correlation function (2.13) admits a superconformal

partial wave decomposition, see e.g. [19]

GBorn(x, y) + Gpert(x, y) = d2
12d

2
34

∑
R,i

AR,i SR(x, y), (2.19)

where the sum runs over all superconformal primary operators appearing in the OPE

expansion of two half-BPS operators

O20′ ×O20′ ∼
∑
R,i

CO20′O20′OR,i (OR,i + . . .) . (2.20)

Superconformal primaries in (2.20) are labelled by their twist τ = ∆ − `, spin ` and a

representation of the SU(4) R-symmetry of N = 4 SYM, which we collectively denote by

R. Again, we also introduced the label i which takes care of a possible additional degen-

eracy of operators with the same twist, spin and the R-symmetry label. Importantly, the

superconformal blocks do not depend on the label i. An explicit description of supercon-

formal multiplets and an explicit form of the superconformal blocks SR can be found in

the appendix A.1. As it is summarised there, we distinguish three types of supermultiplets

in (2.20): half-BPS, quarter-BPS and long supermultiplets. All half-BPS and most quarter-

BPS supermultiplets have their conformal dimensions and structure constants protected

by supersymmetry. Then, their two-point and three-point correlation functions are com-

pletely determined by the Born approximation GBorn. They will therefore not contribute

to the interacting part H(u, v) of the four-point correlation function. The only exception

are quarter-BPS supermultiplets at the unitarity bound. They can combine in the inter-

acting theory to form a long, non-protected supermultiplet [20, 21]. This is exactly the

case for the twist-two operators. Together with the other long supermultiplets they form a

complete non-protected spectrum of operators present in the intermediate channel. Since

we want to find the one-loop correction to H(u, v), we will in the following be interested

only in the non-protected part of the spectrum.

We can perform a superconformal partial wave decomposition of the leading contribu-

tion GBorn(x, y) to the four-point function and get structure constants for all non-protected

multiplets

〈A(0)
τ0,`
〉 =

2c̃
Γ(`+

τ0
2

+2)2

Γ(2`+τ0+3) , τ0 = 2 ,

2
Γ(
τ0
2

+1)2Γ(
τ0
2

+`+2)2

Γ(τ0+1)Γ(τ0+2`+3)

(
c̃ (−1)

τ0
2 + (τ0 + `+ 2)(`+ 1)

)
, τ0 = 4, 6, 8, . . . .

(2.21)

It is interesting to notice that 〈A(0)
τ0,`
〉 = 〈a(0)

τ0,`
〉
∣∣
c→c̃,τ0→τ0+4

.
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Furthermore, using the explicit form of superconformal blocks (A.9) and (A.11) for

non-protected multiplets, the interacting part of the four-point correlation function can be

expanded as

H(u, v) =
∑
τ,`

〈Aτ,`〉u−2Gτ+4,`(x1, x2), (2.22)

where Gτ,`(x1, x2) is exactly the same conformal block as in (2.9) in section 2.1. We notice

that both leading-order structure constants 〈A(0)
τ0,`
〉 and superconformal blocks for non-

protected supermultiplets are related to the Konishi case by shifting τ0 → τ0 + 4. For

this reason, the one-loop calculation for the four-point correlator of half-BPS operators is

analogous to a similar analysis for four Konishi operators, after this shift is implemented

at the level of twist conformal blocks.

3 Twist conformal blocks

In this section we describe twist conformal blocks and their generalisations introduced in [7]

and use them to rewrite the conformal partial wave decomposition of four-point correlation

functions from the previous section. We focus in this section exclusively on the case of four

Konishi operators, leaving the half-BPS case to section 5. We start by defining twist

conformal blocks relevant for the tree-level correlators and then define their generalisations

with spin-dependent insertions that will be relevant for the perturbative expansion around

the tree-level solution.

3.1 Twist conformal blocks

A motivation to study twist conformal blocks is the observation that in perturbation theory

there exists, for each even number τ0 = 2, 4, 6, . . ., an infinite family of operators Oτ0,`,i,
` = 0, 2, 4, . . ., i = 1, . . . , dτ0,`, with the classical twist equal to τ0:

τ = τ0 +O(g) . (3.1)

Therefore, at tree-level we have an infinite twist degeneracy which is lifted only when we

turn on the coupling constant. In particular, it motivates us to resum contributions coming

from all intermediate operators with the same classical twist τ0. In this case, the leading

order four-point correlator (2.11) can be decomposed as

G(0)(u, v) =
∑

τ0=2,4,...

Hτ0(u, v), (3.2)

where we have defined twist conformal blocks

Hτ0(u, v) =

∞∑
`=0

〈a(0)
τ0,`
〉Gτ0,`(u, v), (3.3)

with 〈a(0)
τ0,`
〉 given in (2.12). The sum in (3.3) can be performed for any τ0 using the explicit

form of conformal blocks. For example for τ0 = 2 it renders

H2(u, v) = c
u

v
+ c u. (3.4)

– 7 –
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For higher twists the explicit form of Hτ0(u, v) is more involved and we will not present it

here. However, in all subsequent calculations we will need only their power divergent part

as v → 0. Such divergent parts can be easily calculated and written in a closed form as we

will show below.

3.2 H-functions

In order to study perturbative corrections to the tree-level correlation function G(0)(u, v)

we need to generalise the notion of twist conformal blocks. In particular, when the coupling

constant g is not zero, the twist degeneracy we observed at the tree level is lifted and each

Oτ0,`,i gets individual corrections to their twists and structure constants,

ττ0,`,i = τ0 + g γ
(1)
τ0,`,i

+O(g2), (3.5)

aτ0,`,i = a
(0)
τ0,`,i

+ g a
(1)
τ0,`,i

+O(g2). (3.6)

Here γ
(1)
τ0,`,i

is the one-loop anomalous dimension of Oτ0,`,i and a
(1)
τ0,`,i

is the one-loop cor-

rection to the structure constants. In the conformal partial wave decomposition, these

corrections will introduce an additional dependence on the spin and will modify the sum

in the definition of the twist conformal blocks. Therefore, we will need to calculate sums

of the form
∞∑
`=0

〈a(0)
τ0,`
〉κτ0(`)Gτ0,`(u, v), (3.7)

where κτ0(`) stands for the spin dependence coming from either the anomalous dimensions

or the OPE coefficients. In particular, these insertions can be of two kinds: unbounded in

spin ` or truncated contributions with finite support in `. The truncated contributions do

not affect the divergent part of correlator and we will postpone their study to the following

section. On the other hand, for the insertions unbounded in spin the sum (3.7) can be

calculated as an expansion around the infinite value of spin. In particular, in the unbounded

case κτ0(`) can be expanded around large values of the eigenvalue J2
τ0 = ( τ02 + `)( τ02 + `−1)

of a shifted quadratic Casimir of the conformal group:

κτ0(`) =
∞∑
m=0

(
C(m)

J2m
τ0

+
C(m,log)

J2m
τ0

log Jτ0 + . . .

)
, (3.8)

as was shown in [22]. Then, in order to study perturbation theory beyond the tree level,

we consider a set of functions [7]

H(m,logn)
τ0 (u, v) =

∑
`

〈a(0)
τ0,l
〉(log Jτ0)n

J2m
τ0

Gτ0,l(u, v), (3.9)

which we will refer to as H-functions. The H-functions describe contributions from an

infinite sum of conformal blocks with spin-dependent insertions. In the case m = n = 0

the H-functions H
(0)
τ0 (u, v) coincide with the twist conformal blocks. Importantly, the

functions (3.9) satisfy the following recursion relation

H(m,logn)
τ0 (u, v) = CH(m+1,logn)

τ0 (u, v), (3.10)

– 8 –
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where we defined the shifted quadratic Casimir

C = D1 +D2 + 2
x1x2

x1 − x2
((1− x1)∂1 − (1− x2)∂2)− τ0(τ0 − 6)

4
, (3.11)

with Di = (1− xi)x
2
i ∂

2
i − x2

i ∂i and (x1, x2) are defined in (2.5). The relation (3.10) can be

easily proven by noticing that each individual conformal block Gτ0,`(x1, x2) is an eigenvector

of the Casimir operator C with the eigenvalue J2
τ0 .

3.3 Enhanced divergences

In the following we will not need an explicit form of the functions H
(m,logn)
τ0 (u, v) but only

their enhanced divergent part as v → 0. Expanding (2.9) in this limit, one can notice that

the conformal blocks behave as a logarithm Gτ0,`(u, v) ∼ log(v) for v → 0. By enhanced

divergence we will mean terms which cannot be written as a finite sum of conformal blocks.

There are two kinds of enhanced divergences we will encounter: inverse powers of v, and

functions with higher powers of the logarithm, that is functions of the form p(v) logn v,

n > 1, where p(v) is regular for v → 0. As was shown in [22], the power divergent part of

Hτ0(u, v) is completely determined by operators with large spin `. In order to compute this

divergent part it is therefore sufficient to study the tail of the sum in (3.3). As explained

in the following section such computations can be done explicitly. For example, at τ0 = 2

it renders

H
(0)
2 (u, v) = c

u

v
+O(v0). (3.12)

One notices that the power divergence agrees with the explicit calculation in (3.4). More-

over, the finite term O(v0) will not be necessary in the following sections.

Throughout the paper we will often be interested in comparing only the enhanced

divergent part of various functions. For this reason we introduce a notation

f(u, v)
.
= g(u, v) if f(u, v) = g(u, v) + regular terms in the limit v → 0. (3.13)

Here, by the “regular terms” we mean contributions which can come from a finite number

of conformal blocks. In particular, they can contain a single power of log v but no higher

powers of the logarithm nor inverse powers of v.

3.4 Computing H-functions

We now describe how to construct the power divergent part of the H-functions that we

will need in the subsequent calculations. First, we describe how to use the kernel method,

motivated by [23] and systematically developed in [3, 4]. This method, however, becomes

inefficient very fast. For this reason we explain how to use an alternative method based

on the recursion relation (3.10). We start by focusing on the case of operators with twist

τ0 = 2, and later on describe how H-functions for higher twists arise naturally from the

twist-two case.
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3.4.1 Factorisation

We are only interested in the terms with a power divergence as v → 0. In the following,

it will be more convenient to use the coordinates (x1, x2) instead of the cross-ratios (u, v).

In these coordinates we are interested in the limit x2 → 1. Using the definition (3.3) and

the explicit form of conformal blocks, any power divergent contributions to twist conformal

blocks must arise from an infinite sum over spins. Moreover, they can only come from the

second part of the conformal block (2.9). Then the part of the twist conformal blocks with

a power divergence as x2 → 1 can be written as

x1 x2

x2 − x1
k τ0

2
−1(x1)

∞∑
`=0

〈a(0)
τ0,`
〉k τ0

2
+`(x2). (3.14)

Similar reasoning can be applied to all H-functions defined in (3.9). For this reason the

power divergent part of the H-functions takes a factorised form

H(m,logn)
τ0 (x1, x2)

.
=

x1

x2 − x1
k τ0

2
−1(x1)H

(m,logn)
τ0 (x2), (3.15)

where we have defined the functions

H
(m,logn)
τ0 (x2) = x2

∞∑
`=0

〈a(0)
τ0,`
〉 logn Jτ0
J2m
τ0

k τ0
2

+`(x2). (3.16)

We notice now that the action of the quadratic Casimir (3.11) simplifies significantly

when applied only to the divergent part of the H-functions

CH(m,logn)
τ0 (x1, x2)

.
=

x1

x2 − x1
k τ0

2
−1(x1)DH(m,logn)

τ0 (x2), (3.17)

where

D = (2− x2)(1− x2∂2) + x2
2(1− x2)∂2

2 . (3.18)

Additionally, due to (3.17), the recursion (3.10) implies a similar recursion relation for

H
(m,logn)
τ0 (x2), taking the form

H
(m,logn)
τ0 (x2) = DH(m+1,logn)

τ0 (x2) . (3.19)

It is important to notice that the operator D maps regular terms to regular terms

and therefore does not introduce any enhanced divergence while acting on finite sums of

conformal blocks. More generally, for polynomial functions p(x2) it acts as

D(p(x2) log(1− x2)n) =
n(n− 1) x2 p(x2) log(1− x2)n−2

1− x2
+O((1− x2)0). (3.20)

It is clear that for n = 0, 1 no enhanced divergence is produced when acting with D. On

the other hand, expressions with higher powers of the logarithm, namely n > 1, will always

produce terms with negative powers of 1− x2 after we act on them with D a finite number

of times. This property explains why we refer to such terms as enhanced divergent.
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3.4.2 Derivation of H-functions: kernel method

Let us now focus on finding the power divergent part of the functions H
(m,logn)
τ0 (x2). In

principle, this is possible for any m and n. However, in order to solve the one-loop problem

we will see that it is sufficient to focus on H
(m,logn)
τ0 (x2) for n = 0, 1 and m ≤ 0. Since we

want to compute just the power divergent part of these functions we only need to consider

the tail of the sum over spins in (3.16). In this limit the sum is well-approximated by an

integral which can be explicitly computed using the method described in [3, 4], see also

the appendix A of [24]. This method allows to capture all power divergences, namely all

terms of the form ∼ 1
(1−x2)k

for k > 0.

Let us start by considering the twist conformal block H
(0)
2 (x2) and compute

x2

∑
`

〈a(0)
2,` 〉 k`+1(x2) =

∑
`

2c
Γ(`+ 1)2

Γ(2`+ 1)
x`+2

2 2F1(`+ 1, `+ 1, 2`+ 2; x2). (3.21)

The divergent contributions come from large spins of order ` ∼ 1√
ε
, where we have intro-

duced the notation ε = 1 − x2 in order to simplify the following formulae. Therefore, we

can define ` = p√
ε

and convert the sum over ` into the integral 1
2

∫ dp√
ε
. We also replace the

hypergeometric function by its integral representation

2F1(a, b; c; x) =
Γ(c)

Γ(b)Γ(c− b)

1∫
0

dt
tb−1(1− t)c−b−1

(1− x t)a
. (3.22)

Consecutively, we perform the change of variables

p√
ε

(
p√
ε

+ 1

)
=
j2

ε
, t = 1− w

√
ε . (3.23)

The integration limits of the w integral can safely be extended to [0,∞) since this does not

add any power divergent term. Implementing these changes of variables gives the result

x2

∑
`

〈a(0)
2,` 〉 k`+1(x2)→ (1− ε) c

∫ ∞
0

djK2(j, ε), (3.24)

where we have defined the integral kernel

K2(j, ε) =

∫ ∞
0

dw
−2j

w ε(w
√
ε− 1)

(
w(1− ε)(1− w

√
ε)

w +
√
ε− wε)

) 1
2

(
1+

√
1+ 4j2

ε

)
. (3.25)

Expanding K2(j, ε) in powers of ε we get

K2(j, ε) = 4jK0(2j)
1

ε
− 4

3

(
jK0(2j) + (1 + 2j2)K1(2j)

)
+ . . . , (3.26)

where Kn(x) are the modified Bessel functions of the second kind.

In particular, this method allows us to find

H
(0)
2 (x2)

.
=

1

1− x2
c

∫ ∞
0

dj 4jK0(2j) =
1

1− x2
c+O((1− x2)0), (3.27)
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which is exactly the previously mentioned result (3.12). Importantly, it agrees up to regular

terms with the direct calculation (3.4). Let us emphasise that for the twist conformal block

H
(0)
2 (x2) there are no additional enhanced divergences beyond the power divergence, namely

there are no terms with logn(1 − x2) for n > 1. This statement will become crucial when

we use the recursion relation method in the following section.

More generally, using this method we can find all negative powers of ε = 1− x2 of the

H-functions with m ≤ 0 by modifying the integrand with suitable insertions

H
(m,logn)
2 (x2)

.
= (1− ε) c

∫ ∞
0

djK2(j, ε)

(
ε

j2

)m
logn

(
j√
ε

)
. (3.28)

For example for m = 0, n = 1 we find after an explicit calculation

H
(0,log)
2 (x2)

.
=

1

1− x2
c

∫ ∞
0

dj 4jK0(2j)

(
log j − 1

2
log(1− x2)

)
.
= − γE

1− x2
c− log(1− x2)

2(1− x2)
c+O((1− x2)0), (3.29)

where γE is Euler’s constant.

By studying the ε-dependence in (3.28) we also immediately find a general schematic

form of the power divergent part of H
(m,logn)
2 (x2) for m ≤ 0,

H
(m,logn)
2 (x2)

.
=

−m∑
i=0

n∑
j=0

k
(m,logn)
i,j

logj(1− x2)

(1− x2)−m−i+1
c, (3.30)

where all coefficient k
(m,logn)
i,j in principle can be calculated from (3.28). This quickly

becomes very tedious and for this reason we present a different approach in the follow-

ing section.

3.4.3 Derivation of H-functions: recursion relation method

We will now move to a more efficient approach, where we derive the H-functions

H
(m,logn)
2 (x2) using the recursion relation (3.19). From (3.4) the complete enhanced di-

vergent part of twist conformal block for τ0 = 2 is H
(0)
2 (x2)

.
= c

1−x2
. The recursion rela-

tion (3.19) immediately allows us to find all divergent parts for all H-functions H
(m)
2 (x2)

with m < 0 by simply using

H
(m)
2 (x2) = D−mH(0)

2 (x2) , for m < 0 . (3.31)

Also for positive m we could in principle find the enhanced divergent part of the H-functions

by solving differential equations (3.19). This becomes tedious very quickly and moreover we

would need to introduce two constants of integration every time we increase m. However,

as we already pointed out, we will not need H-functions with positive m at all. Left to

construct are therefore the H-functions with logarithmic insertions. As described in the

appendix A.4 of [8], these are given by differentiating the H
(m)
2 (x2) with respect to the

parameter m:

H
(m,logn)
2 (x2) = −1

2

∂

∂m
H

(m,logn−1)
2 (x2). (3.32)
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We will only need to consider the case n = 1, although the computation for n > 1 is

analogous. In order to find H
(0,log)
2 (x2), we need to analytically continue H

(m)
2 (x2) with

respect to the parameter m and then take the derivative. The most general form of the

enhanced divergent parts of H
(m)
2 (x2) for m ≤ 0 is given by (3.30),

H
(m)
2 (x2)

.
=

−m∑
i=0

k
(m)
i

(1− x2)−m−i+1
c, (3.33)

where all coefficients k
(m)
i can be found explicitly from (3.31). In particular, it allows us

to derive a recursion relation for the coefficients k
(m)
i . For example for k

(m)
0 we get

k
(m)
0 = m2 k

(m+1)
0 , (3.34)

which together with the initial condition k
(0)
0 = 1 coming from H

(0)
2 (x2)

.
= c (1 − x2)−1

allows us to find the general form

k
(m)
0 = Γ(−m+ 1)2 , for m ≤ 0. (3.35)

Proceeding to subleading terms, and using as boundary conditions the explicit values of

k
(−i)
i for i > 0 that can be calculated directly from (3.31), one can find all expansion terms

in (3.33). We present few first terms below

H
(m)
2 (x2)

.
=

Γ(−m+ 1)2c

(1− x2)−m+1
+
m(2m2 − 6m+ 1)

3

Γ(−m)2c

(1− x2)−m
+

+
(m− 1)m(m+ 1)(20m3 − 54m2 − 35m+ 36)

90

Γ(−m− 1)2c

(1− x2)−m−1
+ . . . . (3.36)

For all m ≤ 0 this expansion is valid up to the order (1 − x2)−1. Now, all expressions

in (3.36) are meromorphic functions and can be analytically continued to any value of

m. Taking the derivative with respect to m, as in (3.32), we obtain the divergent part

of H
(m,log)
2 (x2)

H
(m,log)
2 (x2)

.
=− 1

2

Γ(−m+ 1)2c

(1− x2)−m+1
(log(1− x2)− 2S1(−m) + 2γE) + . . . , (3.37)

where Sk(N) =
∑N

i=1
1
ik

are harmonic sums. Again, for given m ≤ 0, this expansion is

valid up to the order (1− x2)−1.

There exists a very compact way to encode all negative powers of 1−x2 in the functions

H
(m,log)
2 (x2) form ≤ 0 by constructing the complete enhanced divergent part of H

(0,log)
2 (x2).

In order to do that we start with a general ansatz

H
(0,log)
2 (x2) =

elog

1− x2
c log(1− x2) +

e−1

1− x2
c+

∞∑
i=0

ei(1− x2)ic log2(1− x2). (3.38)

We can fix the coefficients ei and elog by using the relation

H
(m,log)
τ0 (x2) = D−mH(0,log)

τ0 (x2) , for m < 0, (3.39)
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and comparing it with the previously obtained expansion (3.37). This allows us to find

H
(0,log)
2 (x2) =−1

2

log(1−x2)

1−x2
c− γE

1−x2
c+

(
− 1

12
+

1−x2

10
− 5(1−x2)2

504
+. . .

)
c log2(1−x2).

(3.40)

With this method arbitrarily many terms multiplying log2(1− x2) can be computed if we

use (3.39) for a sufficiently large −m. We refer the reader to the appendix A.2 where we

have collected more orders of this expansion. Now, using the explicit form of H
(0,log)
2 (x2)

in (3.40) we can easily find all negative powers of H
(m,log)
2 (x2) for m ≤ 0 by applying the

formula (3.39). A similar analysis can be done also for H
(m,logn)
2 (x2) for n > 1, however we

will not need these functions in solving the one-loop problem.

3.4.4 Higher twist H-functions

We end this section by describing how to compute the H-functions H
(m,logn)
τ0 (x2) for τ0 > 2.

First of all, notice that the tree-level structure constants for higher twists (2.12) can be

nicely written using the tree-level structure constants for twist-two operators

〈a(0)
τ0,`
〉 =

Γ( τ02 − 1)2

Γ(τ0 − 3)

1

c

(
c (−1)

τ0
2 −

(τ0

2
− 2
)(τ0

2
− 1
)

+ J2
τ0

)
〈a(0)

2,`+
τ0
2
−1
〉, (3.41)

where again J2
τ0 =

(
τ0
2 + `

) (
τ0
2 + `− 1

)
. When we plug this into the definition of twist

conformal blocks for higher twist and perform a change of variables `′ = `+ τ0
2 − 1 we get

H
(0)
τ0 (x2) = x2

Γ( τ02 −1)2

Γ(τ0−3)

∞∑
`′=

τ0
2
−1

1

c

(
c (−1)

τ0
2 −
(τ0

2
−2
)(τ0

2
−1
)

+
(
J ′2
)2)〈a(0)

2,`′〉k`′+1(x2),

(3.42)

where (J ′2)2 = `′(`′ + 1). In the limit x2 → 1 the sum over `′ can be replaced by a sum

from zero to infinity since the difference is a regular term. This leads to

H
(0)
τ0 (x2)

.
=

Γ( τ02 − 1)2

Γ(τ0 − 3)

1

c

((
c (−1)

τ0
2 −

(τ0

2
− 2
)(τ0

2
− 1
))

H
(0)
2 (x2) +H

(−1)
2 (x2)

)
.

(3.43)

This allows us to rewrite the twist conformal blocks for higher twists in terms of functions

we have already constructed. Similar analysis can be performed for all H-functions leading

to the explicit form for higher-twists

H
(m,logn)
τ0 (x2)

.
=

Γ( τ02 −1)2

Γ(τ0−3)

1

c

((
c(−1)

τ0
2 −
(
τ0
2
−2
)(

τ0
2
−1
))
H

(m,logn)
2 (x2)+H

(m−1,logn)
2 (x2)

)
.

(3.44)

To summarise, all H-functions relevant for the one-loop problem can be constructed using

just two functions: H
(0)
2 (x2) and H

(0,log)
2 (x2) whose explicit form can be found in (3.12)

and (3.40), respectively.

3.5 Decomposing one-loop correlator into H-functions

Knowing the explicit form of the H-functions, we focus now on the one-loop four-point

correlation function G(1)(x1, x2) and expand its power divergent part in terms of the H-

functions. By doing this we focus only on contributions to anomalous dimensions and
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structure constants unbounded in spin `. Later on we will also include terms which are

truncated in spin. The latter do not interfere with our analysis of the power divergent part

of the correlator.

For each operator present in the intermediate channel we expand their conformal di-

mension and structure constants as follows

τi = τ0 + g γ
(1)
τ0,`,i

+O(g2), (3.45)

aτi,`,i = a
(0)
τ0,`,i

+ g a
(1)
τ0,`,i

+O(g2). (3.46)

Then the four-point correlation function G(x1, x2), up to the order g, can be written as

G(0)(x1,x2)+gG(1)(x1,x2)

=
∑
τ0,`,i

(
a

(0)
τ0,`,i

+ga
(1)
τ0,`,i

)(
Gτ0,`(x1,x2)+gγ

(1)
τ0,`,i

(
∂

∂τ
Gτ,`(x1,x2)

)∣∣
τ→τ0

)
(3.47)

=
∑
τ0,`

〈a(0)
τ0,`
〉Gτ0,l(x1,x2)+g

∑
τ0,`

(
〈a(1)
τ0,`
〉Gτ0,`(x1,x2)+〈a(0)

τ0,`
γ

(1)
τ0,`
〉
(
∂

∂τ
Gτ,`(x1,x2)

)∣∣
τ→τ0

)
,

where we have again defined the averages 〈fτ0,`〉 =
∑

i fτ0,`,i.

In the last line of (3.47) the derivative with respect to twist τ is understood as a partial

derivative of a function of two variables: τ and `. It turns out that our further analysis

simplifies significantly if we instead use the variables (τ̃ , ˜̀) defined as(
τ̃ , ˜̀

)
=
(
τ, `+

τ

2

)
. (3.48)

Then the partial derivatives in the new variables can be related to the partial derivatives

with respect to the twist and spin as

∂

∂τ
=

∂

∂τ̃
+

1

2

∂

∂ ˜̀
,

∂

∂`
=

∂

∂ ˜̀
. (3.49)

In particular, it implies that ∂τ̃k τ
2

+`(x) = 0. We can now rewrite the derivative in the last

line of (3.47) as

∑
τ0,`

(
〈a(0)
τ0,`

γ
(1)
τ0,`
〉
(
∂

∂τ̃
Gτ,`(x1, x2)

) ∣∣
τ→τ0 +

1

2
〈a(0)
τ0,`

γ
(1)
τ0,`
〉
(
∂

∂ ˜̀
Gτ0,`(x1, x2)

))
.
=
∑
τ0,`

(
〈a(0)
τ0,`

γ
(1)
τ0,`
〉
(
∂

∂τ̃
Gτ,`(x1, x2)

) ∣∣
τ→τ0 −

1

2

∂

∂ ˜̀

(
〈a(0)
τ0,`

γ
(1)
τ0,`
〉
)
Gτ0,`(x1, x2)

)
, (3.50)

where in the second line we dropped a total derivative with respect to ˜̀, which is a regular

term. Finally, we can rewrite the divergent part of G(1)(x1, x2) as

G(1)(x1,x2)
.
=

x1x2

x2−x1

∑
τ0,`

〈a(0)
τ0,`
〉
(
〈α̂τ0,`〉k τ0

2
−1(x1)+〈γτ0,`〉

(
∂

∂τ
k τ

2
−1(x1)

)∣∣
τ→τ0

)
k τ0

2
+`(x2),

(3.51)
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where we used the factorisation (3.14) of the divergent parts of the conformal blocks and in-

troduced

〈γτ0,`〉≡
〈a(0)
τ0,`

γ
(1)
τ0,`
〉

〈a(0)
τ0,`
〉

, (3.52)

〈α̂τ0,`〉〈a
(0)
τ0,`
〉≡ 〈a(1)

τ0,`
〉− 1

2

∂

∂`

(
〈a(0)
τ0,`

γ
(1)
τ0,`
〉
)

= 〈a(1)
τ0,`
〉− 1

2
〈a(0)
τ0,`
〉 ∂
∂`
〈γτ0,`〉−

1

2

∂

∂`
〈a(0)
τ0,`
〉〈γτ0,`〉.

(3.53)

One can recognise the last formula in (3.53) as the one-loop perturbative expansion of âτ0,`
introduced in [8].

In weakly coupled CFTs at one loop, both the anomalous dimensions 〈γτ0,`〉 and the

modified structure constants 〈α̂τ0,`〉 depend on spin as a single logarithm log ` at large `.

Therefore, in order to use the H-functions to constrain the unbounded parts of the CFT

data we expand the modified structure constants 〈α̂τ0,`〉 and anomalous dimensions 〈γτ0,`〉
in the following way [22]:

〈α̂τ0,`〉 =

∞∑
m=0

Aτ0,(m,log)

J2m
τ0

log Jτ0 +

∞∑
m=0

Aτ0,(m)

J2m
τ0

, (3.54)

〈γτ0,`〉 =

∞∑
m=0

Bτ0,(m,log)

J2m
τ0

log Jτ0 +

∞∑
m=0

Bτ0,(m)

J2m
τ0

. (3.55)

Inserting the expansions (3.54) and (3.55) into (3.51) we can finally rewrite the diver-

gent part of the one-loop correlator in terms of H-functions

G(1)(x1, x2)
.
=
∑
τ0

x1

x2 − x1

∑
ρ

(
Aτ0,ρ k τ0

2
−1(x1) +Bτ0,ρ

(
∂

∂τ
k τ

2
−1(x1)

) ∣∣
τ→τ0

)
H

ρ
τ0(x2),

(3.56)

where ρ = (m, log) or ρ = (m), m = 0, 1, 2, . . . and we have used the definition of H-

functions (3.16). This is the most important formula of this section and in the following

we will use it to completely fix the form of G(1)(x1, x2).

3.6 Using H-functions: Toy example

We present a simple example of how to use H-functions to extract the asymptotic spin

dependence of CFT data given a particular function with power divergences. In order to

simplify our discussion we focus here only on the x2 dependence. In analogy with the actual

computations in the next section, we will assume that the sum of H-functions produces a

divergent expression containing a constant term and a term proportional to log(1 − x2):

∞∑
m=0

1∑
n=0

C(m,logn)H
(m,logn)
2 (x2)

.
=
λ1 log(1− x2) + λ0

1− x2
c. (3.57)

We will work iteratively and fix coefficients C(m,logn) by repeatedly applying the Casimir

operator (3.18) on both sides of (3.57) and keeping only power divergent terms. As a first
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step let us analyse the power divergent terms of (3.57) itself. In this case only two terms

in the sum on the left hand side are power divergent as x2 → 1, namely H
(0)
2 (x2) and

H
(0,log)
2 (x2). Therefore we get

C(0)
1

1− x2
c+ C(0,log)

(
− γE

1− x2
− log(1− x2)

2(1− x2)

)
c =

λ1 log(1− x2) + λ0

1− x2
c, (3.58)

where we used the explicit form of H
(0)
2 (x2) and H

(0,log)
2 (x2). Solving this equation we get

C(0) = λ0 − 2λ1γE , C(0,log) = −2λ1. (3.59)

To compute higher coefficients we act with the Casimir D on both sides of (3.57) and again

compare power divergent terms. On the left hand side, using the recurrence (3.19), the

Casimir brings the previously undetermined coefficients C(1) and C(1,log) into the problem.

This renders

1∑
m=0

1∑
n=0

C(m,logn)H
(m−1,logn)
2 (x2)

.
= D

(
λ1 log(1− x2) + λ0

1− x2
c

)
. (3.60)

Using the explicit form of the H-functions

H
(−1)
2 (x2) = DH(0)

2 (x2)
.
=

1

(1− x2)2
c− 3

1− x2
c, (3.61)

H
(−1,log)
2 (x2) = DH(0,log)

2 (x2)
.
=

2− 2γE − log(1− x2)

2(1− x2)2
c+

18γE − 19 + 9 log(1− x2)

6(1− x2)
c,

(3.62)

and plugging in the solutions (3.59), the term proportional to (1− x2)−2 vanishes, and the

term proportional to (1− x2) provides

C(1) = −λ1

3
, C(1,log) = 0. (3.63)

We can continue in this fashion, and determine the coefficients C(m) and C(m,log) after

acting m times with the Casimir D. The results for m = 1, 2, . . . are

C(m) = −2λ1

{
1

6
, − 1

30
,

4

315
, − 1

105
, . . .

}
, C(m,log) = 0. (3.64)

We can identify the C(m) together with C(0,log) as coefficients in the large ` expansion of the

harmonic sum S1(`) expanded in inverse powers of J2 = `(`+ 1). They therefore describe

a function ∑
m,n

C(m,logn)
logn J

J2m
= λ0 − 2λ1S1(`). (3.65)

This computation proves the following relation, which can also be shown by explicit com-

putation, ∑
`

〈a(0)
2,` 〉 x2 k`+1(x2)(λ0 − 2λ1S1(`))

.
=
λ1 log(1− x2) + λ0

1− x2
c. (3.66)

In the following we will apply this method to more complicated functions, but the

general idea will stay exactly the same.
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4 Four-point correlator from H-functions

In this section we use the H-functions to construct the one-loop correction to the four-point

function of four identical scalar operators. Again, we think of the correlator of four Konishi

operators as our example, but the method applies to a large family of scalar operators.

4.1 The strategy

We remind the reader that the four-point correlation function in weakly coupled gauge

theories admits an expansion in the coupling constant g of the form

G(u, v) = G(0)(u, v) + g G(1)(u, v) + . . . . (4.1)

The contributions to the one-loop correlator G(1)(u, v) come from two different sources.

First of all, there are infinite towers of operators for which the CFT data can be expanded

as a power series at large spin `, with possible log ` insertions. Such towers of operators

necessarily produce power divergent contributions to the correlator and we can study them

using the H-functions. Secondly, there are terms in the four-point correlator which after

performing the conformal partial wave decomposition render CFT data that is truncated in

spin. Such terms are always regular as v → 0. Importantly, these two kinds of contributions

mix under the crossing. In fact, the mixing is such that all contributions from infinite

towers, at any twists, are completely determined by the twist-two operators. Therefore

we will start our analysis from general ansatz for the twist-two operators, and then use

the crossing symmetry and the H-function method to extend the ansatz to a full solution

for the one-loop four-point correlator. In the process we will assume that there are no

truncated solutions of the form found in [13].

Our strategy to find the one-loop correlation function is the following:

• Using the explicit form of conformal blocks (2.9) and the bootstrap equation (2.6)

we find a general form of the power divergent part of G(1)(u, v) in the limit v → 0.

We show using crossing symmetry that this is fully described by operators at leading

twist, namely τ0 = 2. Subsequently, we use the H-function method to constrain the

form of the contributions from infinite towers of leading twist operators. Supple-

menting this with terms truncated in spin we arrive at the most general leading twist

contribution to the correlator GL.T.(u, v) ∼ uf(log u, v), where f(log u, v) is expressed

to all orders in v in terms of a finite number of unknowns.

• Crossing symmetry maps uf(log u, v) to the power divergent part of the complete

four-point correlator. This allows us to use the H-function method to find the large

spin expansion of the CFT data for all twists, which can be resummed to closed-form

functions of spin. Plugging this result back to the conformal partial wave expansion

we find the complete form of the four-point correlator in terms of a finite number

of unknowns.

• As a final step we check that such obtained function satisfy all necessary constraints.

In particular, consistency with the bootstrap equation reduces the number of un-

knowns to just four.
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4.2 The ansatz

We focus first on the most general form of the power divergent terms in the limit v → 0

and show that the bootstrap equation implies that all such contributions are encoded by

the twist-two operators.

Let us start by writing down an explicit form of the bootstrap equation in the pertur-

bative expansion

v2+g γext(G(0)(u, v) + g G(1)(u, v)) = u2+g γext(G(0)(v, u) + g G(1)(v, u)), (4.2)

where γext is the one-loop anomalous dimension of the external operators, which we at

the moment will keep unspecified. The one-loop part of this equation can be written in

the form

G̃(1)(u, v) =
u2

v2
G̃(1)(v, u), (4.3)

where for convenience we defined G̃(1)(u, v) = G(1)(u, v) + γext log v G(0)(u, v). Both func-

tions G(0)(u, v) and G(1)(u, v) can be expanded in conformal blocks. Let us then look at

the expansion of a single conformal block in the small g limit,

Gτ,`(u, v) = Gτ0,`(u, v) + g (∂τGτ,`(u, v))|τ→τ0 +O(g2). (4.4)

From the explicit form of the conformal blocks we notice that at one loop there is a

contribution proportional to log u in this expansion but no higher powers of the logarithm.

We also notice that in the small u limit we have Gτ0,`(u, v) ∼ uτ0/2. Thus the first non-

trivial part of G̃(1)(u, v) at small u comes exclusively from the twist-two operators and is

of the form

G̃(1)(u, v) = γext log v + u
(
Q(1)(v, log v) log u+Q(2)(v, log v)

)
+O(u2), (4.5)

where the first trivial term comes from the identity operator contribution to G(0)(u, v) and

Q(i)(v, log v) are arbitrary functions. The bootstrap equation (4.3) used for (4.5) now gives

G̃(1)(u, v) = γext
u2

v2
log u+

u2

v

(
Q(1)(u, log u) log v +Q(2)(u, log u)

)
+O(v0). (4.6)

We notice in particular that, when crossed, (4.5) produces a power divergence for v → 0.

It is easy to see that also the opposite statement is true: any divergent part of G̃(1)(u, v)

is mapped to the first two leading u powers under crossing. Finally, by comparing the

formulae (4.5) and (4.6) we conclude that we must have Q(i)(u, log u) ∼ 1
u + . . ..

Since the term proportional to u0 is completely determined by the tree-level, we will

focus here on the term proportional to u. Therefore, we start our analysis by considering

the most general ansatz for twist-two operators. There are two distinguished terms: the

contributions containing a power divergent part at v → 0, and contributions truncated in

the spin. From the discussion above, we conclude that the former takes the form

G(1)
inf,L.T.(u, v) ∼ u

v
(α11 log u log v + α10 log u+ α01 log v + α00) c+ . . . , (4.7)
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where α00, α10, α01, α11 are arbitrary constants and we introduced an explicit dependence

on c for later convenience. In the subsequent part of this section, we will use the H-function

method to extend this to all subleading orders in v.

For the truncated contributions, let us take L such that{
〈a(1)

2,` 〉 = 〈a(1)
2,` 〉inf + 〈a(0)

2,` 〉µ` ,
〈γ2,`〉 = 〈γ2,`〉inf + ν` ,

` = 0, 2, . . . , L , (4.8)

and that for spins ` > L we have only contributions from infinite towers of operators. In

this case the truncated part of the one-loop answer is given by

G(1)
trunc,L.T.(u, v) =

L∑
`=0

〈a(0)
2,` 〉

(
µ`G2,`(u, v) + ν` (∂τGτ,`(u, v))

∣∣
τ→2

)
. (4.9)

Let us go back to the term containing a divergence as v → 0 in (4.7). It originates

purely from an infinite tower of twist-two operators and can be expanded using H-functions

as in (3.56):

x1

1−x2
(α11 logx1 log(1−x2)+α10 logx1+α01 log(1−x2)+α00)c

.
=

.
= x1

∑
ρ

(
A2,ρ+

1

2
B2,ρ logx1

)
H

(ρ)
2 (x2) , (4.10)

where A2,ρ and B2,ρ are large-J expansion coefficients, as in (3.54) and (3.55), of the

modified structure constants and anomalous dimensions, respectively, with ρ = (m, logn)

for n = 0, 1 and m = 0, 1, . . .. Using the H-function method described in section 3.6 we find

A2,(0,log) =−2α01, A2,(0) =−2α01γE+α00, A2,(m) =−2α01

{
1

6
,
−1

30
,

4

315
, . . .

}
, (4.11)

B2,(0,log) =−4α11, B2,(0) =−4α11γE+2α10, B2,(m) =−4α11

{
1

6
,
−1

30
,

4

315
, . . .

}
. (4.12)

From these values we can find an explicit form of the anomalous dimension and one-loop

structure constants coming from an infinite tower of twist-two operators:

〈γ2,`〉inf = −4α11 S1(`) + 2α10 , (4.13)

〈α̂2,`〉inf = −2α01 S1(`) + α00 . (4.14)

In the next step we will take the results (4.13), (4.14) and plug them into the conformal

partial wave expansion (2.7). We can perform a resummation of the complete leading x1

expansion of the four-point correlator G(1)
inf,L.T.(u, v) and arrive at

G(1)
inf,L.T.(u,v) = x1x2 (α11F11(x1,x2)+α10F10(x1,x2)+α01F01(x1,x2)+α00F00(x1,x2)) ,

(4.15)
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where

F11(x1, x2) = c
x2

1− x2
log(1− x2) log(x1x2) + 2c

(
x2

1− x2
Li2(x2)− 2− x2

1− x2
ζ2

)
, (4.16)

F10(x1, x2) = c

(
1

1− x2
+ 1

)
log(x1x2)− c log(1− x2) , (4.17)

F01(x1, x2) = c

(
1

1− x2
− 1

)
log(1− x2) , (4.18)

F00(x1, x2) = c

(
1

1− x2
+ 1

)
. (4.19)

Here ζ2 = π2

6 and Li2(x) is the dilogarithm. It is easy to confirm that the power divergent

part of (4.15) indeed equals (4.7). We emphasize that the expansion (4.15) is valid only at

the leading order in x1 → 0 but is exact to all orders in x2.

We add together (4.9) and (4.15) to get the most general form of the one-loop correlator

at the leading order in u→ 0 expansion

G(1)
L.T.(u, v) = G(1)

inf,L.T.(u, v) + G(1)
trunc,L.T.(u, v). (4.20)

This answer depends on 2L + 4 unspecified coefficients and concludes the first step in

our strategy.

4.3 Higher twist operators

In the next step we will use the complete form of the leading twist four-point function

G
(1)
L.T.(u, v) together with the crossing equation to study implications for higher twist op-

erators. As we already have pointed out, the term proportional to u are, apart from the

trivial contribution from the identity operator, the only ones which can produce power

divergent terms after the crossing. It implies that after we apply the crossing symmetry to

the function (4.20) we get the complete power divergence of the full one-loop answer.

In order to make our results more transparent, let us assume at the moment that

L = 0, namely only spin ` = 0 contributes to the truncated ansatz (4.9). We will come

back to the general case later. Let us look again at the crossing equation (4.2) at order g,

which gives the following equation for the one-loop correlation function:

G(1)(u, v) =
u2

v2
G(1)(v, u) + γextG(0)(u, v) (log u− log v) . (4.21)

From our previous computations, on the right hand side we know explicitly all power

divergent contributions in the limit v → 0. First of all, we can expand (4.21) at leading

v → 0 and u→ 0 to get

G(1)(x1, x2) ∼ x1

(1− x2)
(α11 log x1 log(1− x2) + (α01 + γext) log x1

+(α10 − γext) log(1− x2) + α00) c+ . . . . (4.22)

Comparing it with (4.7) we find the constraint

α01 = α10 − γext. (4.23)
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After substituting this into (4.21) we notice that the divergent part of G(1)(u, v) de-

pends on the anomalous dimension of external operator γext and the five parameters

(α11, α10, α00, µ0, ν0). We use this function to find the unbounded CFT data for higher

twist operators by solving (3.56). Applying the method explained in section 3.6 we can

compute as many coefficients Aτ0,(m,logk) and Bτ0,(m,logk) as necessary. Similar to the case

of twist-two operators, we plug it back to (3.54), (3.55) and we are able to perform the

sum to find an explicit form of the CFT data coming from infinite towers of operators as

a function of spin. The result for the anomalous dimensions is

〈γτ0,`〉=
c

Pτ0,`

(
4α11η

[
S1

(τ0

2
−2
)

+S1

(τ0

2
+`−1

)
+

1

2
δτ0,4

]
−4ηα10+2ηγext

−4µ0−4ν0

[
S1

(τ0

2
−2
)
−S1

(τ0

2
+`−1

)
+1

])
+2γext, for τ0> 2, (4.24)

where η = (−1)
τ0
2 and Pτ0,` = c η + (τ0 + ` − 2)(` + 1) is the factor that appears in the

tree level structure constants (2.12). The result for 〈α̂τ0,`〉 is more involved and we present

here only its schematic form

〈α̂τ0,`〉=α11〈α̂τ0,`〉11+α10〈α̂τ0,`〉10+α00〈α̂τ0,`〉00+γext〈α̂τ0,`〉ext+µ0〈α̂τ0,`〉µ0 +ν0〈α̂τ0,`〉ν0 .
(4.25)

The explicit expressions for 〈α̂τ0,`〉i can be found in the appendix A.3. In order to get the

one-loop structure constants 〈a(1)
τ0,`
〉 one again needs to use the formula (3.53).

4.4 Complete one-loop resummation

In the previous section we found the CFT data for all twists and spins. We can now

supplement it into the conformal partial wave expansion (2.7) and reproduce the full one-

loop correlation function. After we do that we need to check the obtained function indeed

satisfies the bootstrap equation (4.2). We have performed this calculation explicitly and

have found that the crossing relation for such obtained function implies one more constraint

on the parameters of our ansatz, namely

µ0 = −ν0. (4.26)

Implementing this constraint we end up with the function

G(1)(u,v) =α11G11(u,v)+α10G10(u,v)+(α00−2ζ2α11)G00(u,v)+ν0Gν0(u,v)+γextGext(u,v),

(4.27)

where the individual functions are given by

G11(u, v) = c
u(1 + u2 + v2 − 2u− 2v − 2uv)

v
Φ(u, v), (4.28)

G10(u, v) = c
u ((1 + v − 2u) log u+ (1 + u− 2v) log v)

v
, (4.29)

G00(u, v) = c
u

v
(1 + u+ v), (4.30)

Gν0(u, v) = −cu(u+ v + uv)

v
Φ(u, v), (4.31)
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Gext(u, v) =

(
u2 +

u2

v2
+ c

2u2

v

)
log u+

(
cu− u2

v2
− cu

v
− cu

2

v

)
log v. (4.32)

Here we introduced the usual box function [25]

Φ(u, v) =
log
(

1−x1
1−x2

)
log (x1 x2) + 2 (Li2(x1)− Li2(x2))

x1 − x2
. (4.33)

Notice that we may interpret the contribution G00(u, v) in (4.27) as a one-loop renormal-

isation of the constant c. We also emphasise that the solution Gν0(u, v), which produces

truncated CFT data for leading twist, does not belong to the family of truncated solutions

found in [13] since it contributes to all spins for τ0 > 2.

Let us now come back to a general ansatz for the truncated solution with L > 0. We

can repeat all the calculations we performed in this section and we find that the solution

is even more constrained than in the L = 0 case. Working with the general ansatz we find

that there is no new solution to the bootstrap equation for higher truncated spins. Namely,

we find

µ` = 0, ν` = 0, for ` = 2, 4, . . . , L. (4.34)

Notice that it is a similar conclusion to the one found in [26].

4.5 Comparing with Konishi

In the previous section we have found the most general one-loop four-point correlator of

four identical scalars with classical dimension ∆0 = 2. In this section we will find the

values for all the constants which selects the Konishi solution from the family (4.27). The

best case scenario would be to use the properties of conformal field theories to do that.

One additional piece of information which we could use is the fact that the CFT data

for the stress-energy tensor, which is present in the OPE of two Konishi operators, are

known. It is, however, often difficult to access this information since the stress-energy

tensor is not the only operator with twist τ0 = 2 and spin ` = 2 present in the OPE of two

Konishi operators. For that reason we are not able to fix the Konishi four-point correlator

directly from conformal symmetry and we will need to refer to some explicit results of

direct perturbative calculations which can be found in the literature.

In particular, we start by noticing that the Konishi operator is the only operator of

twist τ0 = 2 and spin ` = 0 in the OPE of two Konishi operators. For that reason the

average 〈a(1)
2,0〉 = a

(1)
KKK := 2C

(0)
KKKC

(1)
KKK is the one-loop structure constant of three Konishi

operators and 〈γ2,0〉 = γ
(1)
K is the one-loop anomalous dimension of Konishi operator. These

can be extracted from the results in [10] and in the normalisation we use in this paper they

take the values

γext = 〈γ2,0〉 = 3, 〈a(1)
2,0〉 = −18c. (4.35)

Moreover, the averages of leading twist anomalous dimensions for all spins can be calculated

using the results from [11], see also [27], and they provide us with the following result

〈γ2,`〉 = 2S1(`), for ` > 0. (4.36)
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In fact, the first two values of (4.36), together with (4.35), are enough to fix all the constants

and we get

α11 = −1

2
, α10 = 0, α00 = −6− ζ2, ν0 = 3, γext = 3. (4.37)

Substituting this in (4.27) we find

G(1)
KKKK(u, v) = −c u

2v

(
1 + 4u+ 4v + 4uv + u2 + v2

)
Φ(u, v)− 6

c u

v
(1 + u+ v)

+
3u

v

(u
v

+ uv + 2cu
)

log u+
3u

v

(
−u
v
− c− cu+ cv

)
log v, (4.38)

which exactly agrees with the result in [10]. We have therefore shown that the one-loop

four-point correlation function of four Konishi operators belongs to our family of solutions,

and we have found the explicit values of the constants describing this solution.

5 The superconformal case

In this section we will focus on the four-point function of half-BPS operators. We follow

very closely the logic from the previous section and adapt it to the case of superconformal

partial wave expansion. Following the observations in section 2.2, the computations in this

case are very similar and here we will only highlight the differences and the results.

The most relevant difference compared to the Konishi case is that the partial waves

take a different form, we need to replace the ordinary conformal blocks by superconformal

blocks. From (2.22) it boils down to the replacement

Gτ,`(u, v)→ u−2Gτ+4,`(u, v). (5.1)

Importantly, the superconformal blocks are eigenvectors of the shifted quadratic Casimir

operator of the superconformal group

CS(u−2Gτ0+4,`(u, v)) = J 2
τ0u
−2Gτ0+4,`(u, v). (5.2)

Here we have defined

CS = u−2Cu2 +
τ0(τ0 − 6)

4
− (τ0 + 4)(τ0 − 2)

4
= u−2Cu2 − 2τ0 + 2, (5.3)

so that the eigenvalue is

J 2
τ0 = J2

τ0+4 =
(τ0

2
+ `+ 1

)(τ0

2
+ `+ 2

)
. (5.4)

Led by these observations we define H-functions in the supersymmetric case to be

H(m,logn)
τ0 (u, v) =

∑
`=0

〈A(0)
τ0,`
〉(logJτ0)n

J 2m
τ0

u−2Gτ0+4,`(u, v), (5.5)

where 〈A(0)
τ0,`
〉 are the structure constants (2.21). The H-functions satisfy again a recur-

sion relation

H(m,logn)
τ0 (u, v) = CSH(m+1,logn)

τ0 (u, v). (5.6)
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Following similar arguments to the ones presented in section 3 one can prove that the power

divergent part of H-functions factorises

H(m,logn)
τ0 (x1, x2)

.
=

x−1
1

x2 − x1
k τ0

2
+1(x1)H

(m,logn)
τ0 (x2), (5.7)

where we have again defined H-function depending only on x2 as

H
(m,logn)
τ0 (x2) = x−1

2

∑
`=0

〈A(0)
τ0,`
〉 logn Jτ0
J 2m
τ0

k τ0
2

+`+2(x2). (5.8)

Also, the action of Casimir operator (5.3) simplifies when acting on the power divergent part

CSH(m,logn)
τ0 (x1, x2)

.
=

x−1
1

x2 − x1
k τ0

2
+1(x1)DSH

(m,logn)
τ0 (x2), (5.9)

where we defined

DS = x−2
2 D x2

2 = −x2 + (2− 3x2)x2∂2 + (1− x2)x2
2∂

2
2 . (5.10)

Finally, the H-functions H
(m,logn)

(x2) satisfy the following recursion relation

H
(m,logn)
τ0 (x2) = DSH

(m+1,logn)
τ0 (x2). (5.11)

In the following, we will compute the one-loop perturbative correction to the function

H(u, v), in exactly the same way as we did in the ordinary, non-superconformal case.

In particular, in analogy with (3.56) its power divergent part can be expanded using H-

functions as

H(x1,x2)
.
=
∑
τ0

x−1
1

x2−x1

∑
ρ

(
Aτ0,ρ k τ0

2
+1(x1)+Bτ0,ρ

(
∂

∂τ
k τ

2
+1(x1)

)∣∣
τ→τ0

)
H

ρ
τ0(x2). (5.12)

Here, Aτ0,ρ and Bτ0,ρ are large-J expansion coefficients of the modified structure constants

and the anomalous dimensions, respectively. Again, in order to extract the CFT data,

we will need only an explicit form of the power divergent part of the H-functions for

ρ = (m, logn) with m ≤ 0 and n = 0, 1. All these functions can be easily obtained from

H
(0)
2 (x2) and H

(0,log)
2 (x2) using the recursion relation (5.11) and

H
(m,logn)
τ0 (x2)

.
=

Γ( τ02 + 1)2

Γ(τ0 + 1)

1

c̃

((
c̃(−1)

τ0
2 − τ0

2
(
τ0

2
+ 1)

)
H

(m,logn)
2 (x2) + H

(m−1,logn)
2 (x2)

)
.

(5.13)

In the superconformal case, we have not been able to compute the exact form of

the complete H
(0)
2 (u, v), in contrast to the conformal case. Therefore, in principle, both

H
(0)
2 (x2) and H

(0,log)
2 (x2) could contain enhanced divergent terms proportional to log2(1−

x2). It turns out that this is not the case2 and we end up with expressions analogous to

2The fact that we can take H
(0)
2 (x2) free from powers of logarithms can be seen by explicitly computing

the power divergent terms of H
(m)
2 (x2) for some m < 0 using the kernel method, and see that they can be

obtained by acting m times with DS on H
(0)
2 (x2).
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the conformal case

H
(0)
2 (x2) =

c̃

1− x2
, (5.14)

H
(0,log)
2 (x2) = − log(1− x2)

2(1− x2)
c̃− γE

1− x2
c̃+

(
− 1

12
− 1− x2

15
+ . . .

)
c̃ log2(1− x2). (5.15)

More terms in the expansion of H
(0,log)
2 (x2) can be found in appendix A.2.

Equipped with the supersymmetric H-functions we are now ready to find the form of

one-loop correction to the function H(u, v). Following a similar discussion as in section 4.2,

we start by observing that again all power divergent contributions to H(u, v) are completely

captured by the twist-two operators. These terms come either from an infinite towers of

twist-two operators or from solution truncated in spin. The general ansatz for leading-u

contribution of H(u, v) is therefore

H(1)
L.T.(u, v) =

u

v
(β11 log u log v + β10 log u+ β01 log v + β00) c̃+ . . . (5.16)

+

L∑
`=0

〈A(0)
2,` 〉u

−2
(
κ`G6,`(u, v) + λ` (∂τGτ+4,`(u, v))

∣∣
τ→2

)
, (5.17)

for some L. The bootstrap equation (2.18) immediately implies that

β10 = β01. (5.18)

Moreover, by direct application of the method described in the previous section, one can

check that the truncated solutions cannot be completed to a crossing symmetric function.

It implies that

κ` = 0 , λ` = 0 , for ` = 0, 2, 4, . . . , L. (5.19)

This stays in contrast to the ordinary conformal case where the spin-zero truncated solution

was allowed.

We now use the H-function method explained in section 3.6 to complete the power

divergent part of (5.16) to a full leading-u answer. In particular, the H-function method

allows us to find the CFT data for twist-two operators

〈γ2,`〉 = −4β11S1(`+ 2) + 2β10, (5.20)

〈α̂2,`〉 = −2β10S1(`+ 2) + β00. (5.21)

We could in principle continue as in the previous section and find a general solution as a

function of three constants (β11, β10, β00). Instead we will focus purely on the case of four

half-BPS operators for which we can use additional information about the CFT data found

in the literature. In particular, it is known that the twist-two operators are not degenerate

and the anomalous dimensions γ2,` have been found by direct calculations in e.g. [12]

γ2,` = 2S1(`+ 2) , ` = 0, 2, 4, . . . . (5.22)
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Additionally, the structure constants for two half-BPS operators and twist-two operators

can also be found in [12] and for ` = 0 it is

a
(1)
2,0 = −c̃. (5.23)

Using the first two values in (5.22) together with (5.23) we can fix our constants to3

β11 = −1

2
, β10 = 0, β00 = −ζ2. (5.24)

Then the leading-u result takes the form

HL.T.(u, v) = −c̃ x1 (2 Li2(x2) + (log (x1) + log (x2)) log (1− x2))

2 (1− x2)
. (5.25)

Now we can use the bootstrap equation (2.18) to find the complete power divergent

part of the function H(u, v). Subsequently, we use the H-function method to find the CFT

data for all twists which we collect in appendix A.5. Plugging it back to the superconfor-

mal partial wave decomposition we can find the complete one-loop correlator which takes

the form

H(u, v) = − c̃ u
2 v

Φ(u, v). (5.26)

This agrees with the known one-loop result for the four-point correlation function of four

half-BPS operators in N = 4 SYM found in [28].

6 Conclusions and outlook

In this paper we found a family of solutions to the conformal bootstrap equation relevant

for the one-loop perturbation of four-dimensional conformal gauge theories. We employed

twist conformal blocks which allow a systematic expansion around the light-cone limit,

namely u = 0, v = 0. Starting from the most general leading expansion (4.20) we were

able to complete it to a full crossing symmetric function of the cross-ratios. For four-point

correlator of scalar operators with dimension ∆ = 2 + g γext + O(g2) we found a four-

parameter family of solutions. By supplementing this by a few additional pieces of CFT

data for the leading-twist spectrum of the theory, we extracted the known form of one-loop

correlator of four Konishi operators. Repeating this analysis for half-BPS operators O20′

in N = 4 SYM and employing the superconformal partial wave expansion we have also

found an explicit form of the one-loop correlator of four such operators.

There are many directions one could pursue using the method we described in this

paper. First of all, the four-point correlator of Konishi operators is only one representative

of the family of solutions we found. A natural question is whether we can identify how

other scalar correlators fit into our solution. Secondly, it should be possible to generalise

our construction and apply it to correlation functions of operators with higher classical

3Notice that these values could also be found by considering (5.20) and (5.21) for ` = −2. This should

correspond to a BPS current in the symmetric traceless representation of R-symmetry which implies γ2,−2 =

0 and a
(1)
2,−2 = 0. It leads to β10 = 0 and β00 = 2 ζ2 β11. The remaining constant can be reabsorbed into the

definition of the coupling constant, leading to the result (5.24).
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dimension. This would allow to find a large class of one-loop correlation functions in

conformal gauge theories. Furthermore, there should be no conceptual obstruction to

generalise it to mixed correlators.

The H-function technology can be in principle applied also to higher orders in the

perturbation theory. Also in this case, the CFT data can be expanded around the infinite

spin and one can extract expansion coefficients for infinite towers of operators by focusing

on the enhanced divergent part of the four-point function. In contrast with the one-loop

case, where the complete enhanced divergent part was captured by power divergent terms,

at higher orders it is possible to get other types of enhanced divergences. For example, at

two loops there can be terms proportional to log2 v which were prohibited by the conformal

partial wave expansion and bootstrap equation at one loop, see section 4.2. By examining

an explicit form of conformal blocks and using the bootstrap equation it is easy to see

that all such contributions come from 〈(γ(1)
τ0,`

)2〉. They are therefore determined by the

one-loop CFT data. Unfortunately, we are unable to access this information from our

previous discussion since there is a degeneracy in the spectrum. It implies that, in general,

〈(γ(1)
τ0,`

)2〉 6= 〈(γ(1)
τ0,`

)〉2 and therefore we cannot use the one-loop averages we have calculated

to determine the enhanced divergent part of the two-loop answer. In order to find it we

would need to solve the mixing problem at one loop completely. This has been successfully

done for the large-N expansion of the correlators of four half-BPS operators in [9, 29, 30].

There, it has been possible to solve the mixing problem by using the knowledge of an infinite

family of one-loop four-point correlators 〈Op(x1)Op(x2)Oq(x3)Oq(x4)〉, for p, q ≥ 2, where

Op(x) is an N = 4 SYM half-BPS operator with R-symmetry labels [0, p, 0]. Similar

analysis should be possible also at weak coupling. In particular, it would allow us to find

the two-loop correlation function of four Konishi operators, which is not known at the

moment. We postpone it to future work.
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A appendices

A.1 Superconformal blocks

In this appendix we present an explicit form of the superconformal blocks appearing in the

expansion of correlation functions of four half-BPS operators in N = 4 SYM. We closely

follow [19] and restrict to the case p1 = p2 = p3 = p4 = 2, which is the one relevant for

this paper. All supermultiplets appearing in the intermediate channel of such correlation

functions can be labelled by a Young tableaux λ = [λ1, λ2], with λ1 ≥ λ2, consisting of

maximally two rows, and a charge γ = 0, 2, 4. We distinguish three types of multiplets:

– 28 –



J
H
E
P
0
2
(
2
0
1
8
)
1
2
3

Young tableaux λ twist τ spin ` R-symmetry representation multiplet type

[0, 0] γ 0 [0, γ, 0] half-BPS

[λ1, 0], λ1 ≥ 2 γ λ1 − 2 [0, γ − 2, 0] quarter-BPS

[λ1, 1], λ1 ≥ 2 γ λ1 − 2 [1, γ − 4, 1] quarter-BPS

[1, 0] γ 0 [1, γ − 2, 1] quarter-BPS

[1, 1] γ 0 [2, γ − 4, 2] quarter-BPS

[λ1, λ2], λ2 ≥ 2 2λ2 λ1 − λ2 [0, 0, 0] long

Table 1. Supermultiplets appearing in the superconformal partial waves of 〈O20′O20′O20′O20′〉.

half-BPS, quarter-BPS and long, whose representation labels are summarised in the table 1.

Notice that the only long multiplets are in the singlet representation [0, 0, 0] of the SU(4)

R-symmetry.

The superconformal blocks are given by

SR(x, y) =

(
x1x2

y1y2

)γ/2
Fγ,λ(x, y), (A.1)

where

Fγ,λ(x, y) = (−1)
γ
2
−1D−1 det

(
FXλ (x) R

Kλ F Y (y)

)
. (A.2)

The explicit form of all ingredients (with 1 ≤ i, j ≤ 2 and 1 ≤ m,n ≤ γ/2) is(
FXλ (x)

)
in

=
[
xλn−ni 2F1

(
λn + 1− n+

γ

2
, λn + 1− n+

γ

2
, 2λn + 2− 2n+ γ; xi

)]
,

(A.3)(
F Y (y)

)
mj

= (yj)
m−1

2F1

(
m− γ

2
,m− γ

2
, 2m− γ; yj

)
, (A.4)(

Kλ

)
mn

= −δm,n−λn , (A.5)

R =

(
1

x1−y1

1
x1−y2

1
x2−y1

1
x2−y2

)
, (A.6)

D =
(x1 − x2) (y1 − y2)

(x1 − y1) (x1 − y2) (x2 − y1) (x2 − y2)
. (A.7)

Here, the square bracket in the definition of FX indicates that we keep only the regular

part, namely

[
x−α2F1(a, b, c; x)

]
= x−α2F1(a, b, c; x)−

α−1∑
k=0

(a)k(b)k
(c)kk!

xk−α =
∞∑
k=0

(a)k+α(b)k+α

(c)k+α(k + α)!
xk . (A.8)

Importantly, for long multiplets have γ = 4, λ2 = τ
2 , λ1 = ` + τ

2 , τ ≥ 4 and α ≥ 0. Then,

the superconformal blocks can be written in a more explicit form as

Flong(x, y) =
(x1 − y1)(x1 − y2)(x2 − y1)(x2 − y2)

(x1 x2)4
Gτ+4,`(x1, x2) , (A.9)

where Gτ,`(x1, x2) is the ordinary conformal block in four dimensions (2.9) as found in [31].
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At the unitarity bound, quarter-BPS multiplets can combine to form a long multiplet

in the interacting theory. This is exactly the case for the twist-two multiplets in the singlet

representation

(γ = 2, λ = [`+ 2, 0])⊕ (γ = 4, λ = [`+ 1, 1]) −→ (γ = 4, λ = [`+ 1, 1])long . (A.10)

Using the explicit form of superconformal blocks one can write

y1y2

x1x2
F2,[`+2,0](x, y) + F4,[`+1,1](x, y) =

(x1 − y1)(x1 − y2)(x2 − y1)(x2 − y2)

(x1 x2)4
G6,`(x1, x2),

(A.11)

which agrees with (A.9) for τ = 2.

A.2 More details on H
(0,log)

(x2)

In the expression (3.40) for H
(0,log)

(x2), the coefficients ei multiplying (1−x2)i log2(1−x2)

for i = {0, 1, 2, . . .} are given by the sequence{
− 1

12
,

1

10
,− 5

504
,− 8

2835
,− 251

199584
,− 55967

81081000
,− 2499683

5837832000
,− 50019793

173675502000
, . . .

}
.

(A.12)

The corresponding values in the superconformal case (5.15) are{
− 1

12
,− 1

15
,− 151

2520
,− 127

2268
,− 53219

997920
,− 8327609

162162000
,− 290756381

5837832000
,− 5620770149

115783668000
, . . .

}
.

(A.13)

A.3 Modified structure constants for the conformal case

In this appendix we present an exact form of the modified structure constants that appear

in (4.25). The equations below are valid for τ0 > 2.

〈α̂τ0,`〉11 =
4cη

Pτ0,`

(
−ζ2+S1

(τ0

2
−2
)2
−S1

(τ0

2
−2
)
S1 (τ0−4)− 1

2
S2

(τ0

2
−2
)
− δτ0,4

2

+

[
2S1

(τ0

2
−2
)
−S1 (τ0−4)+

δτ0,4
4

]
S1

(τ0

2
+`−1

))
, (A.14)

〈α̂τ0,`〉10 =
2cη

Pτ0,`

(
−3S1

(τ0

2
−2
)

+2S1 (τ0−4)− 3δτ0,4
4
−S1

(τ0

2
+`−1

))
, (A.15)

〈α̂τ0,`〉00 =
cη

Pτ0,`
, (A.16)

〈α̂τ0,`〉ext =
2cη

Pτ0,`

(
1+S1

(τ0

2
−2
)
−S1 (τ0−4)+

δτ0,4
2

)
− τ0−3

Pτ0,`

+2
[
−1+2S1

(τ0

2
−2
)
−S1 (τ0−4)+S1

(τ0

2
+`−1

)]
, (A.17)

〈α̂τ0,`〉µ0 =
4c

Pτ0,`

(
−S1

(τ0

2
−2
)

+S1 (τ0−4)

)
, (A.18)
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〈α̂τ0,`〉ν0 =
2c

Pτ0,`

(
−ζ2−2S1

(τ0

2
−2
)
−2S1

(τ0

2
−2
)2

+2S1 (τ0−4)+S2

(τ0

2
−2
)

+2S1

(τ0

2
−2
)
S1 (τ0−4)+2

[
S1

(τ0

2
−2
)
−S1 (τ0−4)

]
S1

(τ0

2
+`−1

))
.

(A.19)

As in (4.24), we have η = (−1)
τ0
2 and Pτ0,` = cη + (τ0 + `− 2) (`+ 1).

A.4 Konishi CFT data

We present here an explicit form of the CFT data for operators present in the conformal

partial wave decomposition of (4.38).

The anomalous dimensions are given by

〈γ2,`〉 = 2S1 (`) + 3δl,0, (A.20)

〈γτ0,`〉 = 6 +
12c

Pτ0,`

[
−S1

(τ0

2
− 2
)

+ S1

(τ0

2
+ `− 1

)]
+

c η

Pτ0,`

[
6− δτ0,4 − 2S1

(τ0

2
− 2
)
− 2

(τ0

2
+ `− 1

)]
, τ0 > 2, (A.21)

and the modified structure constants are

〈α̂2,`〉=−6−3δ`,0−ζ2+6S1(`), (A.22)

〈α̂τ0,`〉= 6
[
−1+2S1

(τ0

2
−2
)
−S1 (τ0−4)+S1

(τ0

2
+`−1

)]
− 3

Pτ0,`
(τ0−3)

+
c

Pτ0,`

(
12
[
S1

(τ0

2
−2
)
−S1 (τ0−4)

]
+η

[
−4S1

(τ0

2
−2
)

+2S1 (τ0−4)− δτ0,4
2

])
S1

(τ0

2
+`−1

)
+

6c

Pτ0,`

(
−ζ2−2S1

(τ0

2
−2
)2

+2S1

(τ0

2
−2
)
S1 (τ0−4)+S2

(τ0

2
−2
))

+
cη

Pτ0,`

(
ζ2+6S1

(τ0

2
−2
)
−2S1

(τ0

2
−2
)2
−6S1 (τ0−4)

+2S1

(τ0

2
−2
)
S1 (τ0−4)+S2

(τ0

2
−2
)

+4δτ0,4

)
, τ0> 2. (A.23)

Recall that the one-loop structure constants 〈a(1)
τ0,`
〉 can be found using (3.53).

A.5 Half-BPS CFT data

We present here an explicit form of the CFT data for long supermultiplets present in the

superconformal partial wave decomposition of (5.26).

The anomalous dimensions are given by

〈γ2,`〉 = 2S1 (`+ 2) , (A.24)

〈γτ0,`〉 = − 2 c̃

Pτ0,`

(
(η + 1)S1

(τ0

2

)
+ (η − 1)S1

(τ0

2
+ `+ 1

))
, τ0 > 2 , (A.25)
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and the modified structure constants are

〈α̂2,`〉=−ζ2, (A.26)

〈α̂τ0,`〉=−
2 c̃

Pτ0,`

([
(2η−1)S1

(τ0

2

)
+(1−η)S1 (τ0)

]
S1

(τ0

2
+`+1

)
+(1+η)S1

(τ0

2

)2

−(1+η)S1

(τ0

2

)
S1 (τ0)− 1+η

2
S2

(τ0

2

)
+

1−η
2

ζ2

)
, τ0> 2, (A.27)

where Pτ0,` = c̃ η + (τ0 + ` + 2)(` + 1) is the factor appearing in the higher twist struc-

ture constants (2.21). The one-loop structure constants 〈a(1)
τ0,`
〉 can be found using the

supersymmetric version of (3.53).
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