9 research outputs found

    Biased agonism of three different cannabinoid receptor agonists in mouse brain cortex

    Get PDF
    Cannabinoid receptors are able to couple to different families of G proteins when activated by an agonist drug. It has been suggested that different intracellular responses may be activated depending on the ligand. The goal of the present study was to characterize the pattern of G protein subunit stimulation triggered by three different cannabinoid ligands, Δ9-THC, WIN55212-2, and ACEA in mouse brain cortex. Stimulation of the [35S]GTPγS binding coupled to specific immunoprecipitation with antibodies against different subtypes of G proteins (Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαs, Gαq/11, and Gα12/13), in the presence of Δ9-THC, WIN55212-2 and ACEA (submaximal concentration 10 μM) was determined by scintillation proximity assay (SPA) technique in mouse cortex of wild type, CB1 knock-out, CB2 knock-out and CB1/CB2 double knock-out mice. Results show that, in mouse brain cortex, cannabinoid agonists are able to significantly stimulate not only the classical inhibitory Gαi/o subunits but also other G subunits like Gαz, Gαq/11, and Gα12/13. Moreover, the specific pattern of G protein subunit activation is different depending on the ligand. In conclusion, our results demonstrate that, in mice brain native tissue, different exogenous cannabinoid ligands are able to selectively activate different inhibitory and non-inhibitory Gα protein subtypes, through the activation of CB1 and/or CB2 receptors. Results of the present study may help to understand the specific molecular pathways involved in the pharmacological effects of cannabinoid-derived drugs. � 2016 Diez-Alarcia, Ibarra-Lecue, Lopez-Cardona, Meana, Gutierrez-Ad�n, Callado, Agirregoitia and Urig�en

    Identification of genes implicated in schizophrenia by a meta-analysis of microarray gene expression studies of the human prefrontal cortex

    No full text
    Small cohort sizes and modest levels of gene expression changes in brain tissue have plagued the statistical approaches employed in microarray studies investigating the mechanism of schizophrenia. To combat these problems a combined analysis of six prior microarray studies was performed to facilitate the robust statistical analysis of gene expression data from the dorsolateral prefrontal cortex of 107 patients with schizophrenia and 118 healthy subjects. Multivariate permutation tests identified 144 genes that were differentially expressed between schizophrenia and control groups. Seventy of these genes were identified as differentially expressed in at least one component microarray study but none of these individual studies had the power to identify the remaining 74 genes, demonstrating the utility of a combined approach. Gene ontology terms and biological pathways that were significantly enriched for differentially expressed genes were related to neuronal cell-cell signaling, mesenchymal induction, and mitogen-activated protein kinase signaling, which have all previously been associated with the etiopathogenesis of schizophrenia. The differential expression of BAG3, C4B, EGR1, MT1X, NEUROD6, SST and S100A8 was confirmed by real-time quantitative PCR in an independent cohort using postmortem human prefrontal cortex samples. Comparison of gene expression between schizophrenic subjects with and without detectable levels of antipsychotics in their blood suggests that the modulation of MT1X and S100A8 may be the result of drug exposure. In conclusion, this combined analysis has resulted in a statistically robust identification of genes whose dysregulation may contribute to the mechanism of schizophrenia

    Adrenergic modulation with photochromic ligands

    No full text
    Adrenoceptors are ubiquitous and mediate important autonomic functions as well as modulating arousal, cognition and pain on a central level. Understanding these physiological processes and their underlying neural circuits requires manipulating adrenergic neurotransmission with high spatio\u2010temporal precision. Here we present a first generation of photochromic ligands (adrenoswitches) obtained via azologization of a class of cyclic amidines related to the known ligand clonidine. Their pharmacology, photochromism, bioavailability and lack of toxicity allow for broad biological applications, as demonstrated by controlling locomotion in zebrafish and pupillary responses in mice

    Adrenergic Modulation with Photochromic Ligands

    Get PDF
    Adrenoceptors are ubiquitous and regulate heart and respiratory rate, digestion, metabolism, and vascular tone. They can be activated or blocked with adrenergic drugs, but systemic administration causes broad adverse effects. We have developed photochromic ligands (adrenoswitches) to switch on and off adrenoceptor activity on demand at selected locations. Their pharmacology, photochromism, bioavailability and lack of toxicity allow photomodulating adrenergic signalling, as demonstrated by controlling locomotion in zebrafish and pupillary responses in blind mice
    corecore