11 research outputs found

    White spot syndrome virus (WSSV) transmission risk through infected cooked shrimp products assessed by polymerase chain reaction (PCR) and bio-inoculation studies

    Get PDF
    The aim of the study was to evaluate the resistance of white spot syndrome virus (WSSV) in shrimps (Penaeus monodon) to the process of cooking. The cooking was carried out at 1000C six different durations 5, 10, 15, 20, 25 and 30 min. The presence of WSSV was tested by single step and nested polymerase chain reaction (PCR). In the single step PCR, the primers 1s5 & 1a16 and IK1 & IK2 were used. While in the nested PCR, primers IK1 &IK2 – IK3 & IK4 were used for the detection of WSSV. WSSV was detected in the single step PCR with the primers 1s5 and 1a16 and the nested PCR with the primers IK1 and IK2 – IK3 & IK4 from the cooked shrimp samples. The cooked shrimps, which gave positive results for WSSV by PCR, were further confirmed for the viability of WSSV by conducting the bio-inoculation studies. Mortality (100%) was observed within 123 h of intra-muscular post injection (P.I) into the live healthy WSSV-free shrimps (P. monodon). These results show that the WSSV survive the cooking process and even infected cooked shrimp products may pose a transmission risk for WSSV to the native shrimp farming systems

    Electrochemical estimation of the active site density on metal-free nitrogen-doped carbon using catechol as an adsorbate

    No full text
    Carbon is heat-treated with a nitrogen-containing precursor (ammonia) to obtain nitrogen-doped carbon and the composition is estimated using CHN and XPS analysis. The active site density of the carbon and nitrogen-doped carbon is quantified using 1,2-dihydroxybenzene (catechol) molecules as an adsorbate in phosphate buffer (pH 7) solution. The features of the voltammograms of the catecholadsorbed high surface area carbon and nitrogen-doped carbon are similar to that of the polished nitrogen-grafted glassy carbon electrode (GCE) reported in the literature. At the same time, the polished GCE does not show any well-defined catechol adsorption features. It is found that the adsorption charge (obtained by integrating the peak area, after subtracting the background) is in the order of N/C 900 > N/C 1000 > N/C 800 > N/C 700 > C. A similar trend is observed in their oxygen reduction reaction (ORR) activity in 0.1 M KOH. Moreover, the turnover frequency (ToF) of the catalysts is calculated and it is comparable to that reported in the literature using other methods for non-precious catalysts. Therefore, the adsorption charge can be correlated with the active site density of the carbon and nitrogen-doped carbon samples

    Oxygen Reduction Reaction and Peroxide Generation on Shape-Controlled and Polycrystalline Platinum Nanoparticles in Acidic and Alkaline Electrolytes

    No full text
    Shape-controlled Pt nanoparticles (cubic, tetrahedral, and cuboctahedral) are synthesized using stabilizers and capping agents. The nanoparticles are cleaned thoroughly and electrochemically characterized in acidic (0.5 M H2SO4 and 0.1 M HClO4) and alkaline (0.1 M NaOH) electrolytes, and their features are compared to that of polycrystalline Pt. Even with less than 100% shape-selectivity and with the truncation at the edges and corners as shown by the ex-situ TEM analysis, the voltammetric features of the shape-controlled nanoparticles correlate very well with that of the respective single-crystal surfaces, particularly the voltammograms of shape-controlled nanoparticles of relatively larger size. Shape-controlled nanoparticles of smaller size show somewhat higher contributions from the other orientations as well because of the unavoidable contribution from the truncation at the edges and corners. The Cu stripping voltammograms qualitatively correlate with the TEM analysis and the voltammograms. The fractions of low-index crystallographic orientations are estimated through the irreversible adsorption of Ge and Bi. Pt-nanocubes with dominant {100} facets are the most active toward oxygen reduction reaction (ORR) in strongly adsorbing H2SO4 electrolytes, while Pttetrahedral with dominant {111} facets is the most active in 0.1 M HClO4 and 0.1 M NaOH electrolytes. The difference in ORR activity is attributed to both the structure-sensitivity of the catalyst and the inhibiting effect of the anions present in the electrolytes. Moreover, the percentage of peroxide generation is 1.5-5% in weakly adsorbing (0.1 M HClO4) electrolytes and 5 12% in strongly adsorbing (0.5 M H2SO4 and 0.1 M NaOH) electrolytes

    Electrocatalysis for the Hydrogen Economy

    No full text
    This chapter deals with the concept of “hydrogen economy”, which was introduced by John O.M’ Bockris in 1972. We summarize the fundamental principles and the progress for the reactions relevant to the hydrogen economy, namely the hydrogen and oxygen evolution for water electrolyzers, and the hydrogen oxidation and oxygen reduction for fuel cells. The activity of each reaction can be correlated to a single descriptor, i.e. the adsorption energy of a key reaction intermediate, following a volcano-type relationship. Highly active materials can be prepared with the aid of modern computational and experimental tools. Nevertheless, to develop catalysts that are substantially more active and reach the performance of ideal catalysts, the focus must be placed on materials that can break the energetic scaling relations between intermediates. The systems of choice are acidic water electrolyzers or fuel cells, using noble metals for the catalytic material, despite the great progress made in the field of alkaline systems. However, to realize the concept of hydrogen economy on a large scale, the electrode material for either reaction must combine activity, stability and abundance
    corecore