7 research outputs found

    Seismic performance evaluation of traditional timber Hımış frames: capacity spectrum method based assessment

    Get PDF
    Timber constructions have been widely suggested to be seismically resistant based on post-disaster reconnaissance studies. This observation has, however, remained to a large extent anecdotal due to the lack of experimental work supporting it, especially for certain timber architectural forms, including traditional timber frame “hımış” structures. To fill this gap, the authors carried out an extensive full-scale testing scheme using frames of various geometrical configurations, tested under reverse-cyclic lateral loading with/without infill (brick and adobe) or cladding (bağdadi and şamdolma) (Aktas et al. in Earthq Spectra 30(4):1711–1732, 2014a, b). The tests concluded that hımış frames had high energy dissipation capabilities due mostly to nailed connections. Infill/cladding significantly helped improve stiffness and lateral load strength of the frames, and timber type did not seem to make a remarkable impact on the overall behaviour. The current paper, on the other hand, uses test data to calculate capacity/demand ratios based on capacity spectrum method and Eurocode 8 to elaborate more on the performance of “hımış” structures under seismic loading. The obtained results are discussed to draw important conclusions with regards to how frame geometry and infill/cladding techniques affect the overall performance

    Origin of metamorphic soles and their post-kinematic mafic dyke swarms in the Antalya and Lycian ophiolites, SW Turkey

    No full text
    The Antalya and Lycian ophiolites are situated in the western part of the Tauride belt (SW Turkey). Ophiolite-related metamorphic sole rocks in the Tauride belt are observed either at the base of the tectonites or in mélange units. Geochemical observations from the metamorphic sole rocks of Köycegiz ophiolite indicate three different geochemical affinities: mid-ocean ridge basalt (MORB), island-arc tholeiite (IAT) and within-plate basalt (WPB) or seamount are present at the base of the Lycian ophiolites. The sole rocks of the ophiolite are made up of amphibolite, comprising mainly amphibole, pyroxene and plagioclase. Below the amphibolites are epidote-bearing rocks and, at the base, micaschists. The metamorphic sole below ophiolites exhibits an inverted metamorphic zonation. Very strong deformation within kyanite-garnet-bearing micaschists located far from the peridotites was observed, whereas the upper part of the metamorphic sole (near the contact with the peridotites) present relatively less deformation than the lower part. The metamorphic sole rocks of the Lycian ophiolite are cross-cut by some doleritic dykes with a typical greenschist facies mineral assemblage. However, while the metamorphic sole rocks exhibit well-developed lineation and foliation; the dykes lack such structures. © 2003 John Wiley and Sons, Ltd
    corecore