48 research outputs found

    Demographic and microbial characteristics of extrapulmonary tuberculosis cases diagnosed in Malatya, Turkey, 2001-2007

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extrapulmonary tuberculosis (EPTB) has an increasing rate in Turkey. The reason remains largely unknown. A better understanding of the demographic and microbial characteristics of EPTB in the Turkish population would extend the knowledgebase of EPTB and allow us to develop better strategies to control tuberculosis (TB).</p> <p><b>Methods</b></p> <p>We retrospectively evaluated clinical and laboratory data of 397 bacteriologically-confirmed TB cases diagnosed during an eight year-period using by chi-square analysis and multivariate logistic regression model.</p> <p>Results</p> <p>Of the 397 study patients, 103 (25.9%) had EPTB and 294 (74.1%) had pulmonary tuberculosis (PTB). The most commonly seen two types of EPTB were genitourinary TB (27.2%) and meningeal TB (19.4%). TB in bone/joints, pleural cavity, lymph nodes, skin, and peritoneal cavity occurred at a frequency ranging from 9.7% to 10.7%. The age distribution was significantly different (P < 0.01) between PTB and EPTB, with patients older than 45 years tending to have an increased risk of EPTB. Furthermore, the distribution of different types of EPTB differed significantly among age groups (P = 0.03). Meningeal and bone and/or joint TB were more commonly observed among the male patients, while lymphatic, genitourinary, and peritoneal TB cases were more frequently seen among females. Unique strain infection was statistically significantly associated with EPTB (OR: 2.82, 95% CI [1.59, 5.00])</p> <p>Conclusions</p> <p>EPTB accounted for a significant proportion of TB cases in Malatya, Turkey between 2001 and 2007. The current study has provided an insight into the dynamics of EPTB in Malatya, Turkey. However, the risk factors for having EPTB in Malatya, Turkey remain to be assessed in future studies using population-based or randomly selected sample.</p

    Antioxidant intervention of smoking-induced lung tumor in mice by vitamin E and quercetin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiological and in vitro studies suggest that antioxidants such as quercetin and vitamin E (VE) can prevent lung tumor caused by smoking; however, there is limited evidence from animal studies.</p> <p>Methods</p> <p>In the present study, Swiss mouse was used to examine the potential of quercetin and VE for prevention lung tumor induced by smoking.</p> <p>Results</p> <p>Our results suggest that the incidence of lung tumor and tumor multiplicity were 43.5% and 1.00 ± 0.29 in smoking group; Quercetin has limited effects on lung tumor prevention in this in vivo model, as measured by assays for free radical scavenging, reduction of smoke-induced DNA damage and inhibition of apoptosis. On the other hand, vitamin E drastically decreased the incidence of lung tumor and tumor multiplicity which were 17.0% and 0.32 ± 0.16, respectively (p < 0.05); and demonstrated prominent antioxidant effects, reduction of DNA damage and decreased cell apoptosis (p < 0.05). Combined treatment with quercetin and VE in this animal model did not demonstrate any effect greater than that due to vitamin E alone. In addition, gender differences in the occurrence of smoke induced-lung tumor and antioxidant intervention were also observed.</p> <p>Conclusion</p> <p>We conclude that VE might prevent lung tumor induced by smoking in Swiss mice.</p

    The effects of erdosteine, N-acetylcysteine, and vitamin E on nicotine-induced apoptosis of pulmonary cells

    No full text
    This study was conducted to investigate the frequency of apoptosis in the pulmonary epithelial cells of rats after intratraperitoneal nicotine injection, in order to examine the role of inflammatory markers [myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-alpha)] in nicotine-induced lung damage, and to determine the protective effects of three known antioxidant agents [N-acetylcysteine (NAC), erdosteine, and vitamin E] on the lung toxicity of nicotine in the lungs

    Regulation of nicotine-induced apoptosis of pulmonary artery endothelial cells by treatment of N-acetylcysteine and vitamin E

    No full text
    This study investigated the frequency of apoptosis in rat pulmonary artery endothelial cells after intraperitoneal nicotine injection, examining the roles of the inflammatory markers myeloperoxidase [MPO] tumour necrosis factor alpha (TNF-alpha), and vascular endothelial growth factor (VEGF) in nicotine-induced vascular damage and the protective effects of two known antioxidant agents, N-acetylcysteine (NAC) and vitamin E. Female Wistar rats were divided into four groups, each composed of nine rats: negative control group, positive control group, NAC-treated group (500 mg/kg), and vitamin E-treated group (500 mg/kg). Nicotine was intraperitoneally injected at a dosage of 0.6 mg/kg for 21 days. Following nicotine injection, the antioxidants were administered orally; treatment was continued until the rats were killed. Lung tissue samples were stained with hematoxylin-eosin (H&E) for histopathological assessments. Apoptosis level in endothelial cells was determined by using TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick endlabelling) method. Staining of cytoplasmic TNF-alpha and VEGF in endothelial cells, and perivascular MPO activity were evaluated by immunohistochemistry. The treatments with NAC and vitamin E significantly reduced the rate of nicotine-induced endothelial cell apoptosis. NAC and vitamin E significantly reduced the increases in the local production of TNF-a and VEGF, and perivascular MPO activity. This findings suggest that NAC can be as effective as vitamin E in protecting against nicotine-induced endothelial cell apoptosis

    Effect of polyethylene glycol induced drought stress on photosynthesis in two chickpea genotypes with different drought tolerance

    No full text
    Responses of parameters related with photosynthesis and the involvement of various factors in photosynthetic damage in two chickpea genotypes, Gokce (tolerant) and Kusmen (sensitive) under drought stress were assessed. Photosynthetic pigment content decreased under drought stress in two genotypes. Significant decreases in gs, Pn and E were determined in Kusmen. No significant change in these parameters was measured in Gokce under drought stress. Fv/Fm, ΦPS2 and ETR decreased in drought stressed plants of Kusmen as compared to control plants however Fv/Fm, ΦPS2 and ETR did not change in Gokce under drought stress. Increases in NPQ were determined under stress in both genotypes. Drought stress did not affect rubisco activity and rubisco concentration in Gokce while, the activity and the content declined in Kusmen. The drought tolerance of the Gokce genotype is a consequence of a balance among leaf water potential, stomatal conductance, photosynthesis, and transpiration. On the other hand, photosynthesis in Kusmen may be not only restricted by stomatal limitations but also by non-stomatal limitations under drought stress

    Versatile Approach to Septonasal Deformity

    Full text link

    Copper Stress and Responses in Plants

    No full text
    Copper is a micronutrient necessary for normal plant growth and development; however, its deficiency and redundancy result in some defects in plant metabolism, especially photosynthesis. Plants are evolved to counterattack the adverse effects of copper by developing protective mechanisms, one of which is exclusion of copper ions from the cells by sequestration, which is a kind of isolation Cu from cellular components. The other way is reduction of ion uptake by roots. When the roots are exposed to excess copper, then detoxification strategies such as metal chelation and transport and activation of signal mechanisms, hormones, proteins, and antioxidant system are induced. This chapter gives an overview of the effect of copper stress on plant growth, photosynthesis, and the antioxidant system. We present insight into genetic and molecular aspects of signal transduction in response to copper stress. © 2016 Elsevier Inc. All rights reserved
    corecore