84 research outputs found

    Thermodynamics of a model for RNA folding

    Get PDF
    We analyze the thermodynamic properties of a simplified model for folded RNA molecules recently studied by G. Vernizzi, H. Orland, A. Zee (in {\it Phys. Rev. Lett.} {\bf 94} (2005) 168103). The model consists of a chain of one-flavor base molecules with a flexible backbone and all possible pairing interactions equally allowed. The spatial pseudoknot structure of the model can be efficiently studied by introducing a NĂ—NN \times N hermitian random matrix model at each chain site, and associating Feynman diagrams of these models to spatial configurations of the molecules. We obtain an exact expression for the topological expansion of the partition function of the system. We calculate exact and asymptotic expressions for the free energy, specific heat, entanglement and chemical potential and study their behavior as a function of temperature. Our results are consistent with the interpretation of 1/N1/N as being a measure of the concentration of Mg++\rm{Mg}^{++} in solution.Comment: 11 pages, 4 figure

    Topological phase transition in a RNA model in the de Gennes regime

    Get PDF
    We study a simplified model of the RNA molecule proposed by G. Vernizzi, H. Orland and A. Zee in the regime of strong concentration of positive ions in solution. The model considers a flexible chain of equal bases that can pairwise interact with any other one along the chain, while preserving the property of saturation of the interactions. In the regime considered, we observe the emergence of a critical temperature T_c separating two phases that can be characterized by the topology of the predominant configurations: in the large temperature regime, the dominant configurations of the molecule have very large genera (of the order of the size of the molecule), corresponding to a complex topology, whereas in the opposite regime of low temperatures, the dominant configurations are simple and have the topology of a sphere. We determine that this topological phase transition is of first order and provide an analytic expression for T_c. The regime studied for this model exhibits analogies with that for the dense polymer systems studied by de GennesComment: 15 pages, 4 figure

    3D Bioprinting for Tissue and Organ Fabrication

    Get PDF
    The field of regenerative medicine has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes. Conventional approaches based on scaffolding and microengineering are limited in their capacity of producing tissue constructs with precise biomimetic properties. Three-dimensional (3D) bioprinting technology, on the other hand, promises to bridge the divergence between artificially engineered tissue constructs and native tissues. In a sense, 3D bioprinting offers unprecedented versatility to co-deliver cells and biomaterials with precise control over their compositions, spatial distributions, and architectural accuracy, therefore achieving detailed or even personalized recapitulation of the fine shape, structure, and architecture of target tissues and organs. Here we briefly describe recent progresses of 3D bioprinting technology and associated bioinks suitable for the printing process. We then focus on the applications of this technology in fabrication of biomimetic constructs of several representative tissues and organs, including blood vessel, heart, liver, and cartilage. We finally conclude with future challenges in 3D bioprinting as well as potential solutions for further development.United States. Office of Naval Research. Young Investigator ProgramNational Institutes of Health (U.S.) (Grants EB012597, AR057837, DE021468, HL099073 and R56AI105024)Presidential Early Career Award for Scientists and Engineer

    Nucleation and crystallization in bio-based immiscible polyester blends

    Get PDF
    Bio-based thermoplastic polyesters are highly promising materials as they combine interesting thermal and physical properties and in many cases biodegradability. However, sometimes the best property balance can only be achieved by blending in order to improve barrier properties, biodegradability or mechanical properties. Nucleation, crystallization and morphology are key factors that can dominate all these properties in crystallizable biobased polyesters. Therefore, their understanding, prediction and tailoring is essential. In this work, after a brief introduction about immiscible polymer blends, we summarize the crystallization behavior of the most important bio-based (and immiscible) polyester blends, considering examples of double-crystalline components. Even though in some specific blends (e.g., polylactide/polycaprolactone) many efforts have been made to understand the influence of blending on the nucleation, crystallization and morphology of the parent components, there are still many points that have yet to be understood. In the case of other immiscible polyester blends systems, the literature is scarce, opening up opportunities in this environmentally important research topic.The authors would like to acknowledge funding by the BIODEST project ((RISE) H2020-MSCA-RISE-2017-778092

    Annotating Accommodation Advertisements Using CERNO

    No full text
    • …
    corecore