24 research outputs found

    Garlic Accelerates Red Blood Cell Turnover and Splenic Erythropoietic Gene Expression in Mice: Evidence for Erythropoietin-Independent Erythropoiesis

    Get PDF
    Garlic (Allium sativum) has been valued in many cultures both for its health effects and as a culinary flavor enhancer. Garlic's chemical complexity is widely thought to be the source of its many health benefits, which include, but are not limited to, anti-platelet, procirculatory, anti-inflammatory, anti-apoptotic, neuro-protective, and anti-cancer effects. While a growing body of scientific evidence strongly upholds the herb's broad and potent capacity to influence health, the common mechanisms underlying these diverse effects remain disjointed and relatively poorly understood. We adopted a phenotype-driven approach to investigate the effects of garlic in a mouse model. We examined RBC indices and morphologies, spleen histochemistry, RBC half-lives and gene expression profiles, followed up by qPCR and immunoblot validation. The RBCs of garlic-fed mice register shorter half-lives than the control. But they have normal blood chemistry and RBC indices. Their spleens manifest increased heme oxygenase 1, higher levels of iron and bilirubin, and presumably higher CO, a pleiotropic gasotransmitter. Heat shock genes and those critical for erythropoiesis are elevated in spleens but not in bone marrow. The garlic-fed mice have lower plasma erythropoietin than the controls, however. Chronic exposure to CO of mice on garlic-free diet was sufficient to cause increased RBC indices but again with a lower plasma erythropoietin level than air-treated controls. Furthermore, dietary garlic supplementation and CO treatment showed additive effects on reducing plasma erythropoietin levels in mice. Thus, garlic consumption not only causes increased energy demand from the faster RBC turnover but also increases the production of CO, which in turn stimulates splenic erythropoiesis by an erythropoietin-independent mechanism, thus completing the sequence of feedback regulation for RBC metabolism. Being a pleiotropic gasotransmitter, CO may be a second messenger for garlic's other physiological effects

    Nuclear envelope structural defects cause chromosomal numerical instability and aneuploidy in ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite our substantial understanding of molecular mechanisms and gene mutations involved in cancer, the technical approaches for diagnosis and prognosis of cancer are limited. In routine clinical diagnosis of cancer, the procedure is very basic: nuclear morphology is used as a common assessment of the degree of malignancy, and hence acts as a prognostic and predictive indicator of the disease. Furthermore, though the atypical nuclear morphology of cancer cells is believed to be a consequence of oncogenic signaling, the molecular basis remains unclear. Another common characteristic of human cancer is aneuploidy, but the causes and its role in carcinogenesis are not well established.</p> <p>Methods</p> <p>We investigated the expression of the nuclear envelope proteins lamin A/C in ovarian cancer by immunohistochemistry and studied the consequence of lamin A/C suppression using siRNA in primary human ovarian surface epithelial cells in culture. We used immunofluorescence microscopy to analyze nuclear morphology, flow cytometry to analyze cellular DNA content, and fluorescence <it>in situ </it>hybridization to examine cell ploidy of the lamin A/C-suppressed cells.</p> <p>Results</p> <p>We found that nuclear lamina proteins lamin A/C are often absent (47%) in ovarian cancer cells and tissues. Even in lamin A/C-positive ovarian cancer, the expression is heterogeneous within the population of tumor cells. In most cancer cell lines, a significant fraction of the lamin A/C-negative population was observed to intermix with the lamin A/C-positive cells. Down regulation of lamin A/C in non-cancerous primary ovarian surface epithelial cells led to morphological deformation and development of aneuploidy. The aneuploid cells became growth retarded due to a p53-dependent induction of the cell cycle inhibitor p21.</p> <p>Conclusions</p> <p>We conclude that the loss of nuclear envelope structural proteins, such as lamin A/C, may underlie two of the hallmarks of cancer - aberrations in nuclear morphology and aneuploidy.</p

    Proteogenomic studies in epithelial ovarian cancer: established knowledge and future needs

    Full text link
    There has been a concerted effort over the last decade to improve our understanding of the complex biology of ovarian cancer. A linear growth in published proteogenomic studies has addressed a variety of questions regarding its molecular pathogenesis. A number of genes have been identified by transcriptomic approaches, some of which are being investigated as putative tumor markers (HE4, OPN, Ep-CAM and Mesothelin), whilst others are potential targets for molecular therapeutic approaches (VEGF, IO4, EGFR, MUC1, CLDN4 and SLPI). Proteogenomics has the potential to further change our current characterization and treatment of ovarian cancer. Additional advances will depend on integrated study designs, interdisciplinary collaborations, use of robust high-throughput platforms, as well as uniform guidelines for bioinformatic analyses
    corecore