197 research outputs found
Evidence for hard and soft substructures in thermoelectric SnSe
SnSe is a topical thermoelectric material with a low thermal conductivity
which is linked to its unique crystal structure. We use low-temperature heat
capacity measurements to demonstrate the presence of two characteristic
vibrational energy scales in SnSe with Debye temperatures thetaD1 = 345(9) K
and thetaD2 = 154(2) K. These hard and soft substructures are quantitatively
linked to the strong and weak Sn-Se bonds in the crystal structure. The heat
capacity model predicts the temperature evolution of the unit cell volume,
confirming that this two-substructure model captures the basic thermal
properties. Comparison with phonon calculations reveals that the soft
substructure is associated with the low energy phonon modes that are
responsible for the thermal transport. This suggests that searching for
materials containing highly divergent bond distances should be a fruitful route
for discovering low thermal conductivity materials.Comment: Accepted by Applied Physics Letter
Germ Line Origin and Somatic Mutations Determine the Target Tissues in Systemic AL-Amyloidosis
BACKGROUND: Amyloid is insoluble aggregated proteins deposited in the extra cellular space. About 25 different proteins are known to form amyloid in vivo and are associated with severe diseases such as Alzheimer's disease, prion diseases and type-2 diabetes. Light chain (AL) -amyloidosis is unique among amyloid diseases in that the fibril protein, a monoclonal immunoglobulin light chain, varies between individuals and that no two AL-proteins with identical primary structures have been described to date. The variability in tissue distribution of amyloid deposits is considerably larger in systemic AL-amyloidosis than in any other form of amyloidosis. The reason for this variation is believed to be based on the differences in properties of the amyloidogenic immunoglobulin light chain. However, there is presently no known relationship between the structure of an AL-protein and tissue distribution. METHODOLOGY/PRINCIPAL FINDINGS: We compared the pattern of amyloid deposition in four individuals with amyloid protein derived from variable light chain gene O18-O8, the source of a high proportion of amyloidogenic light chains, and in whom all or most of the fibril protein had been determined by amino acid sequencing. In spite of great similarities between the structures of the proteins, there was a pronounced variability in deposition pattern. We also compared the tissue distribution in these four individuals with that of four other patients with AL-amyloid derived from the L2-L16 gene. Although the interindividual variations were pronounced, liver and kidney involvement was much more evident in the latter four. CONCLUSIONS/SIGNIFICANCE: We conclude that although the use of a specific gene influences the tissue distribution of amyloid, each light chain exhibits one or more determinants of organ-specificity, which originate from somatic mutations and post-translational modifications. Eventual identification of such determinants could lead to improved treatment of patients with AL amyloidosis
Purification of molybdenum oxide, growth and characterization of medium size zinc molybdate crystals for the LUMINEU program
The LUMINEU program aims at performing a pilot experiment on neutrinoless
double beta decay of 100Mo using radiopure ZnMoO4 crystals operated as
scintillating bolometers. Growth of high quality radiopure crystals is a
complex task, since there are no commercially available molybdenum compounds
with the required levels of purity and radioactive contamination. This paper
discusses approaches to purify molybdenum and synthesize compound for high
quality radiopure ZnMoO4 crystal growth. A combination of a double sublimation
(with addition of zinc molybdate) with subsequent recrystallization in aqueous
solutions (using zinc molybdate as a collector) was used. Zinc molybdate
crystals up to 1.5 kg were grown by the low-thermal-gradient Czochralski
technique, their optical, luminescent, diamagnetic, thermal and bolometric
properties were tested.Comment: Contribution to Proc. of Int. Workshop on Radiopure Scintillators
RPSCINT 2013, 17-20 September 2013, Kyiv, Ukraine; to be published in EPJ Web
of Conferences; expected to be online in January 2014; 6 pages, 6 figures,
and 3 table
Proteins That Promote Filopodia Stability, but Not Number, Lead to More Axonal-Dendritic Contacts
Dendritic filopodia are dynamic protrusions that are thought to play an active role in synaptogenesis and serve as precursors to spine synapses. However, this hypothesis is largely based on a temporal correlation between filopodia formation and synaptogenesis. We investigated the role of filopodia in synapse formation by contrasting the roles of molecules that affect filopodia elaboration and motility, versus those that impact synapse induction and maturation. We used a filopodia inducing motif that is found in GAP-43, as a molecular tool, and found this palmitoylated motif enhanced filopodia number and motility, but reduced the probability of forming a stable axon-dendrite contact. Conversely, expression of neuroligin-1 (NLG-1), a synapse inducing cell adhesion molecule, resulted in a decrease in filopodia motility, but an increase in the number of stable axonal contacts. Moreover, RNAi knockdown of NLG-1 reduced the number of presynaptic contacts formed. Postsynaptic scaffolding proteins such as Shank1b, a protein that induces the maturation of spine synapses, increased the rate at which filopodia transformed into spines by stabilization of the initial contact with axons. Taken together, these results suggest that increased filopodia stability and not density, may be the rate-limiting step for synapse formation
Comparaison de diverses méthodes d'interprétation statistique de liaison entre le milieu et la production du Pin sylvestre en Sologne
International audienc
Content of free amino acids, RNA, and DNA in brain tissue during prolonged administration of chlorpromazine
- …
