93 research outputs found

    Uncoupling of ATP-Mediated Calcium Signaling and Dysregulated Interleukin-6 Secretion in Dendritic Cells by Nanomolar Thimerosal

    Get PDF
    Dendritic cells (DCs), a rare cell type widely distributed in the soma, are potent antigen-presenting cells that initiate primary immune responses. DCs rely on intracellular redox state and calcium (Ca(2+)) signals for proper development and function, but the relationship between these two signaling systems is unclear. Thimerosal (THI) is a mercurial used to preserve vaccines and consumer products, and is used experimentally to induce Ca(2+) release from microsomal stores. We tested adenosine triphosphate (ATP)-mediated Ca(2+) responses of DCs transiently exposed to nanomolar THI. Transcriptional and immunocytochemical analyses show that murine myeloid immature DCs (IDCs) and mature DCs (MDCs) express inositol 1,4,5-trisphosphate receptor (IP(3)R) and ryanodine receptor (RyR) Ca(2+) channels, known targets of THI. IDCs express the RyR1 isoform in a punctate distribution that is densest near plasma membranes and within dendritic processes, whereas IP(3)Rs are more generally distributed. RyR1 positively and negatively regulates purinergic signaling because ryanodine (Ry) blockade a) recruited 80% more ATP responders, b) shortened ATP-mediated Ca(2+) transients > 2-fold, and c) produced a delayed and persistent rise (≥ 2-fold) in baseline Ca(2+). THI (100 nM, 5 min) recruited more ATP responders, shortened the ATP-mediated Ca(2+) transient (≥ 1.4-fold), and produced a delayed rise (≥ 3-fold) in the Ca(2+) baseline, mimicking Ry. THI and Ry, in combination, produced additive effects leading to uncoupling of IP(3)R and RyR1 signals. THI altered ATP-mediated interleukin-6 secretion, initially enhancing the rate of cytokine secretion but suppressing cytokine secretion overall in DCs. DCs are exquisitely sensitive to THI, with one mechanism involving the uncoupling of positive and negative regulation of Ca(2+) signals contributed by RyR1

    TAVR in Older Adults: Moving Toward a Comprehensive Geriatric Assessment and Away From Chronological Age

    Get PDF
    Calcific aortic stenosis can be considered a model for geriatric cardiovascular conditions due to a confluence of factors. The remarkable technological development of transcatheter aortic valve replacement was studied initially on older adult populations with prohibitive or high-risk for surgical valve replacement. Through these trials, the cardiovascular community has recognized that stratification of these chronologically older adults can be improved incrementally by invoking the concept of frailty and other geriatric risks. Given the complexity of the aging process, stratification by chronological age should only be the initial step but is no longer sufficient to optimally quantify cardiovascular and noncardiovascular risk. In this review, we employ a geriatric cardiology lens to focus on the diagnosis and the comprehensive management of aortic stenosis in older adults to enhance shared decision-making with patients and their families and optimize patient-centered outcomes. Finally, we highlight knowledge gaps that are critical for future areas of study

    Novel Echocardiographic Biomarkers in the Management of Atrial Fibrillation

    Get PDF
    Purpose of Review: Atrial fibrillation (AF) is the most common arrhythmia in adults. The number of patients with AF is anticipated to increase annually, mainly due to the aging population alongside improved arrhythmia detection. AF is associated with a significantly elevated risk of hospitalization, stroke, thromboembolism, heart failure, and all-cause mortality. Echocardiography is one of the key components of routine assessment and management of AF. Therefore, the aim of this review is to briefly summarize current knowledge on “novel” echocardiographic parameters that may be of value in the management of AF patients. Recent Findings: Novel echocardiographic biomarkers and their clinical application related to the management of AF have been taken into consideration. Both standard parameters such as atrial size and volume but also novels like atrial strain and tissue Doppler techniques have been analyzed. Summary: A number of novel echocardiographic parameters have been proven to enable early detection of left atrial dysfunction along with increased diagnosis accuracy. This concerns particularly experienced echocardiographers. Hence, these techniques might improve the prediction of stroke and thromboembolic events among AF patients and need to be further developed and disseminated. Nonetheless, even the standard imaging parameters could be of significant value and should not be discontinued in everyday clinical practice. © 2019, The Author(s)

    The cellular composition of the human immune system is shaped by age and cohabitation.

    Get PDF
    Detailed population-level description of the human immune system has recently become achievable. We used a 'systems-level' approach to establish a resource of cellular immune profiles of 670 healthy individuals. We report a high level of interindividual variation, with low longitudinal variation, at the level of cellular subset composition of the immune system. Despite the profound effects of antigen exposure on individual antigen-specific clones, the cellular subset structure proved highly elastic, with transient vaccination-induced changes followed by a return to the individual's unique baseline. Notably, the largest influence on immunological variation identified was cohabitation, with 50% less immunological variation between individuals who share an environment (as parents) than between people in the wider population. These results identify local environmental conditions as a key factor in shaping the human immune system

    Problems with using mechanisms to solve the problem of extrapolation

    Full text link

    Food and the circadian activity of the hypothalamic-pituitary-adrenal axis

    Full text link

    Stress and the pituitary-adrenal axis

    No full text
    The hypothalamo-pituitary-adrenal axis is controlled by complex regulatory mechanisms. Numerous factors such as CRF, vasopressin, oxytocin, angiotensin II and conceivably other hormones--all controlled by various substances acting on central locations--stimulate the release of the stress hormone ACTH. On the other hand, glucocorticoids inhibit the secretion of ACTH by acting at the hypothalamic and/or pituitary level. The release of ACTH is therefore the final outcome of the interactions between the hypothalamus, the adrenal gland and possibly other organs. The multimolecular nature of the factors responsible for the control of the pituitary-adrenal axis is an attractive hypothesis because of the great variety of stress stimuli. The various factors could have specific roles in various stress situations. They provide a highly sensitive mechanism regulating very finely the stress hormone in response to a whole variety of endogenous and exogenous stimuli. Depending on the type of stress, they may therefore singly or in combination affect the amount and duration of ACTH and steroid secretion. The released glucocorticoids may then produce their numerous effects on inflammatory and immunological processes, carbohydrate metabolism, shock and water balance. It has been postulated that these effects may be important in order to prevent host responses from over-reacting to stress and threatening homeostasis. However, proof of the necessity of the glucocorticoid hypersecretion in response to stress remains elusive
    corecore