3,823 research outputs found
Towards Einstein-Podolsky-Rosen quantum channel multiplexing
A single broadband squeezed field constitutes a quantum communication
resource that is sufficient for the realization of a large number N of quantum
channels based on distributed Einstein-Podolsky-Rosen (EPR) entangled states.
Each channel can serve as a resource for, e.g. independent quantum key
distribution or teleportation protocols. N-fold channel multiplexing can be
realized by accessing 2N squeezed modes at different Fourier frequencies. We
report on the experimental implementation of the N=1 case through the
interference of two squeezed states, extracted from a single broadband squeezed
field, and demonstrate all techniques required for multiplexing (N>1). Quantum
channel frequency multiplexing can be used to optimize the exploitation of a
broadband squeezed field in a quantum information task. For instance, it is
useful if the bandwidth of the squeezed field is larger than the bandwidth of
the homodyne detectors. This is currently a typical situation in many
experiments with squeezed and two-mode squeezed entangled light.Comment: 4 pages, 4 figures. In the new version we cite recent experimental
work bei Mehmet et al., arxiv0909.5386, in order to clarify the motivation of
our work and its possible applicatio
An experimental investigation of criteria for continuous variable entanglement
We generate a pair of entangled beams from the interference of two amplitude
squeezed beams. The entanglement is quantified in terms of EPR-paradox [Reid88]
and inseparability [Duan00] criteria, with observed results of and , respectively. Both results clearly beat the standard quantum
limit of unity. We experimentally analyze the effect of decoherence on each
criterion and demonstrate qualitative differences. We also characterize the
number of required and excess photons present in the entangled beams and
provide contour plots of the efficacy of quantum information protocols in terms
of these variables.Comment: 4 pages, 5 figure
Microcanonical entropy inflection points: Key to systematic understanding of transitions in finite systems
We introduce a systematic classification method for the analogs of phase
transitions in finite systems. This completely general analysis, which is
applicable to any physical system and extends towards the thermodynamic limit,
is based on the microcanonical entropy and its energetic derivative, the
inverse caloric temperature. Inflection points of this quantity signal
cooperative activity and thus serve as distinct indicators of transitions. We
demonstrate the power of this method through application to the long-standing
problem of liquid-solid transitions in elastic, flexible homopolymers.Comment: 4 pages, 3 figure
High reflectivity grating waveguide coatings for 1064nm
We propose thin single-layer grating waveguide structures to be used as
high-reflectivity, but low thermal noise, alternative to conventional coatings
for gravitational wave detector test mass mirrors. Grating waveguide (GWG)
coatings can show a reflectivity of up to 100% with an overall thickness of
less than a wavelength. We theoretically investigate GWG coatings for 1064nm
based on tantala (Ta2O5) on a Silica substrate focussing on broad spectral
response and low thickness
Rentabilitätsvergleiche im Umlage- und Kapitaldeckungsverfahren : Konzepte, empirische Ergebnisse, sozialpolitische Konsequenzen
Die demographischen Veränderungen sind Auslöser einer grundsätzlicheren Debatte über Alterssicherungsverfahren, nämlich der Wahl eines effizienten Finanzierungsverfahrens der Altersvorsorge. Im Zentrum der Debatte steht immer wieder der Renditevergleich zwischen dem Umlage- und dem Kapitaldeckungsverfahren. Ihm gilt dieses Papier. Er ist keineswegs so einfach, wie es oft suggeriert wird, da Versicherungs- und Risikoaspekte, vor allem aber das Übergangsproblem berücksichtigt werden müssen. Der vorliegende Beitrag stellt den wirtschaftstheoretischen Hintergrund mit den wichtigsten relevanten Konzepten dar und präsentiert empirische Schätzungen zur heutigen und Simulationsergebnisse zur zukünftigen Entwicklung der relevanten Renditen. Wir schließen mit den sozialpolitischen Konsequenzen für eine reformierte Altersvorsorge
Experimental characterization of frequency dependent squeezed light
We report on the demonstration of broadband squeezed laser beams that show a
frequency dependent orientation of the squeezing ellipse. Carrier frequency as
well as quadrature angle were stably locked to a reference laser beam at
1064nm. This frequency dependent squeezing was characterized in terms of noise
power spectra and contour plots of Wigner functions. The later were measured by
quantum state tomography. Our tomograph allowed a stable lock to a local
oscillator beam for arbitrary quadrature angles with one degree precision.
Frequency dependent orientations of the squeezing ellipse are necessary for
squeezed states of light to provide a broadband sensitivity improvement in
third generation gravitational wave interferometers. We consider the
application of our system to long baseline interferometers such as a future
squeezed light upgraded GEO600 detector.Comment: 8 pages, 8 figure
Conformational Mechanics of Polymer Adsorption Transitions at Attractive Substrates
Conformational phases of a semiflexible off-lattice homopolymer model near an
attractive substrate are investigated by means of multicanonical computer
simulations. In our polymer-substrate model, nonbonded pairs of monomers as
well as monomers and the substrate interact via attractive van der Waals
forces. To characterize conformational phases of this hybrid system, we analyze
thermal fluctuations of energetic and structural quantities, as well as
adequate docking parameters. Introducing a solvent parameter related to the
strength of the surface attraction, we construct and discuss the
solubility-temperature phase diagram. Apart from the main phases of adsorbed
and desorbed conformations, we identify several other phase transitions such as
the freezing transition between energy-dominated crystalline low-temperature
structures and globular entropy-dominated conformations.Comment: 13 pages, 15 figure
Optomechanical sideband cooling of a thin membrane within a cavity
We present an experimental study of dynamical back-action cooling of the
fundamental vibrational mode of a thin semitransparent membrane placed within a
high-finesse optical cavity. We study how the radiation pressure interaction
modifies the mechanical response of the vibrational mode, and the experimental
results are in agreement with a Langevin equation description of the coupled
dynamics. The experiments are carried out in the resolved sideband regime, and
we have observed cooling by a factor 350 We have also observed the mechanical
frequency shift associated with the quadratic term in the expansion of the
cavity mode frequency versus the effective membrane position, which is
typically negligible in other cavity optomechanical devices.Comment: 15 pages, 7 figure
- …
