322 research outputs found

    The First Empirical Mass Loss Law for Population II Giants

    Full text link
    Using the Spitzer IRAC camera we have obtained mid-IR photometry of the red giant branch stars in the Galactic globular cluster 47 Tuc. About 100 stars show an excess of mid-infrared light above that expected from their photospheric emission. This is plausibly due to dust formation in mass flowing from these stars. This mass loss extends down to the level of the horizontal branch and increases with luminosity. The mass loss is episodic, occurring in only a fraction of stars at a given luminosity. Using a simple model and our observations we derive mass loss rates for these stars. Finally, we obtain the first empirical mass loss formula calibrated with observations of Population II stars. The dependence on luminosity of our mass loss rate is considerably shallower than the widely used Reimers Law. The results presented here are the first from our Spitzer survey of a carefully chosen sample of 17 Galactic Globular Clusters, spanning the entire metallicity range from about one hundredth up to almost solar

    Fixture-abutment connection surface and micro-gap measurements by 3D micro-tomographic technique analysis

    Get PDF
    X-ray micro-tomography (micro-CT) is a miniaturized form of conventional computed axial tomography (CAT) able to investigate small radio-opaque objects at a-few-microns high resolution, in a non-destructive, non-invasive, and tri-dimensional way. Compared to traditional optical and electron microscopy techniques, which provide two-dimensional images, this innovative investigation technology enables a sample tri-dimensional analysis without cutting, coating or exposing the object to any particular chemical treatment. X-ray micro-tomography matches ideal 3D microscopy features: the possibility of investigating an object in natural conditions and without any preparation or alteration; non-invasive, non-destructive, and sufficiently magnified 3D reconstruction; reliable measurement of numeric data of the internal structure (morphology, structure and ultra-structure). Hence, this technique has multi-fold applications in a wide range of fields, not only in medical and odontostomatologic areas, but also in biomedical engineering, materials science, biology, electronics, geology, archaeology, oil industry, and semi-conductors industry. This study shows possible applications of micro-CT in dental implantology to analyze 3D micro-features of dental implant to abutment interface. Indeed, implant-abutment misfit is known to increase mechanical stress on connection structures and surrounding bone tissue. This condition may cause not only screw preload loss or screw fracture, but also biological issues in peri-implant tissues

    The Star Formation History of the Carina Dwarf Galaxy

    Get PDF
    We have analyzed deep B and V photometry of the Carina dwarf spheroidal reaching below the old main-sequence turnoff to about V = 25. Using simulated color-magnitude diagrams to model a range of star formation scenarios, we have extracted a detailed, global star formation history. Carina experienced three significant episodes of star formation at about 15 Gyr, 7 Gyr, and 3 Gyr. Contrary to the generic picture of galaxy evolution, however, the bulk of star formation, at least 50%, occured during the episode 7 Gyr ago, which may have lasted as long as 2 Gyr. For unknown reasons, Carina formed only 10-20% of its stars at an ancient epoch and then remained quiescent for more than 4 Gyr. The remainder (~30%) formed relatively recently, only 3 Gyr ago. Interest in the local population of dwarf galaxies has increased lately due to their potential importance in the understanding of faint galaxy counts. We surmise that objects like Carina, which exhibits the most extreme episodic behavior of any of the dwarf spheroidal companions to the Galaxy, are capable of contributing to the observed excess of blue galaxies at B = 24 only if the star formation occurred instantaneously.Comment: 23 pages of text, 20 figures, 8 tables. AJ, in pres

    The Accretion of Lyman Alplha Clouds onto Gas-Rech Protogalaxies; A Scenario for the Formation of Globular Star Clusters

    Full text link
    A satisfactory theory for the formation of globular star clusters (GCs) has long been elusive, perhaps because their true progenitors had not yet been guessed. In this paper I propose a causal relationship between the strongly decreasing densities of Lyman alpha (LyA) clouds at high redshift and the formation of GCs - namely that GCs were created by the accretion of LyA clouds onto protogalaxies. I describe a scenario which involves an inherently stable and orderly cycling of compression and cooling in the central cores of clouds during the extended period of dissipation in the outer regins of gas-rich proto galaxies, culminating in a burst of efficient star formation. I demonstrate that the comoving density of GCs is comparable to that of LyA clouds at high redshift, that the energetic requirements for compression to core GC densities can be met, and that the time-scale for cooling is within obvious limits imposed by dynamical stability. This dissipative process requires there to be a large column of dissipated gas about the attractor in order to form GCs. In addition, the energy requirements for compression requires attractor masses greater than that capable of sustaining circular velocities of ~40 km/s. If this scenario is supported by numerical simulations, then by implication, the GCs were formed at modest redshifts of z~1-3. This knowledge could help to break the degeneracy between lookback time and redshift. The model is consistent with a picture of hierarchical galaxy growth over time scales of many billions of years.Comment: 7 pages. Accepted, 10 June 1999 Astrophysical Journa

    Towards urban archaeo-geophysics in Peru. The case study of Plaza de Armas in Cusco

    Get PDF
    One of the most complex challenges of heritage sciences is the identification and protection of buried archaeological heritage in urban areas and the need to manage, maintain and inspect underground services. Archaeology and geophysics, used in an integrated way, provide an important contribution to open new perspectives in understanding both the history of cities and in helping the decision makers in planning and governing the urban development and management. The problems of identification and interpretation of geophysical features in urban subsoil make it necessary to develop ad hoc procedures to be implemented and validated in significant case studies. This paper deals with the results of an interdisciplinary project in Cusco (Peru), the capital of Inca Empire, where the georadar method was applied for the first time in the main square. The georadar method was successfully employed based on knowledge of the historical evolution of Cusco and the availability of archaeological records provided by some excavations nearby the study area. Starting from a model for the electromagnetic wave reflection from archaeological structures and pipes, georadar results were interpreted by means of comparative morphological analysis of high amplitude values observed from time slices with reflectors visualized in the radargrams

    The Age Dependent Luminosities of the Red Giant Branch Bump, Asymptotic Giant Branch Bump, and Horizontal Branch Red Clump

    Get PDF
    Color-magnitude diagrams of globular clusters often exhibit a prominent horizontal branch (HB) and may also show features such as the red giant branch (RGB) bump and the asymptotic giant branch (AGB) bump. Stellar evolution theory predicts that the luminosities of these features will depend on the metallicity and age of the cluster. We calculate theoretical lines of 2 to 12 Gyr constant age RGB-bumps and AGB-bumps in the V(HB-Bump)--[Fe/H] diagram, which shows the brightness difference between the bump and the HB as a function of metallicity. In order to test the predictions, we identify giant branch bumps in new Hubble Space Telescope color-magnitude diagrams for 8 SMC clusters. First, we conclude that the SMC cluster bumps are RGB-bumps. The data for clusters younger than ~6 Gyr are in fair agreement the relative age dependent luminosities of the HB and RGB-bump. The V(HB-Bump)--[Fe/H] data for clusters older then ~6 Gyr demonstrate a less satisfactory agreement with our calculations. We conclude that ~6 Gyr is a lower bound to the age of clusters for which the Galactic globular cluster, age independent V(HB-Bump)--[Fe/H] calibration is valid. Application of the V(HB-bump)--[Fe/H] diagram to stellar population studies is discussed.Comment: Accepted for publication in the Astrophysical Journal, 30 pages, Latex aaspp4.sty, including 7 postscript figure

    HST-NICMOS Observations of Terzan 5: Stellar Content and Structure of the Core

    Get PDF
    We report results from HST-NICMOS imaging of the extremely dense core of the globular cluster Terzan 5. This highly obscured bulge cluster has been estimated to have one of the highest collision rates of any galactic globular cluster, making its core a particularly conducive environment for the production of interacting binary systems. We have reconstructed high-resolution images of the central 19"x19" region of Terzan 5 by application of the drizzle algorithm to dithered NIC2 images in the F110W, F187W, and F187N near-infrared filters. We have used a DAOPHOT/ALLSTAR analysis of these images to produce the deepest color-magnitude diagram (CMD) yet obtained for the core of Terzan 5. We have also analyzed the parallel 11"X11" NIC1 field, centered 30" from the cluster center and imaged in F110W and F160W, and an additional NIC2 field that is immediately adjacent to the central field. This imaging results in a clean detection of the red-giant branch and horizontal branch in the central NIC2 field, and the detection of these plus the main-sequence turnoff and the upper main sequence in the NIC1 field. We have constructed an H versus J-H CMD for the NIC1 field. We obtain a new distance estimate of 8.7 kpc, which places Terzan 5 within less than 1 kpc of the galactic center. We have also determined a central surface-density profile which results in a maximum likelihood estimate of 7.9" +/- 0.6" for the cluster core radius. We discuss the implications of these results for the dynamical state of Terzan 5.Comment: 17 pages, 9 figures, accepted for publication in ApJ, for May 20, 200

    Globular Clusters in the Magellanic Clouds.II: IR-Array Photometry for 12 Globulars and Contributions to the Integrated Cluster Light

    Get PDF
    We report the results of the observations in the JHK bands of 12 globular clusters in the LMC, and present CMDs down to K=16 for about 450 stars. We merge the data with the BV ones presented in paper I and use the merged data to study the evolution of integrated magnitudes and colours of SSPs. We find that the AGB contributes about 60 percent of integrated clusters light in K, while the contribution from RGB is correlated with the age of the cluster. The age at which the first appearance of the RGB takes place depends on the models adopted ranging from about 600 Myr in the "classical" models to about 1.5 Gyr with the "overshooting" models. Both models give the same fractional contribution of the RGB to the cluster light, in agreement with the Fuel Consumption Theorem. The overall picture is consistent with the early conclusions of Persson et al. 1983 and Frogel et al. 1990 that J-K colour is driven by AGB stars, V-K is controlled by AGB and RGB stars and B-V is partially influenced by the whole population redder than the RGB clump, but is strongly dependent on the fading and reddening of the TO stars with age.Comment: 26 pages, 15 figures available on request, uuencoded compressed postscript file with tables included, BAP 08-1994-021-OA

    Live Cell Imaging Unveils Multiple Domain Requirements for In Vivo Dimerization of the Glucocorticoid Receptor

    Get PDF
    Glucocorticoids are essential for life, but are also implicated in disease pathogenesis and may produce unwanted effects when given in high doses. Glucocorticoid receptor (GR) transcriptional activity and clinical outcome have been linked to its oligomerization state. Although a point mutation within the GR DNA-binding domain (GRdim mutant) has been reported as crucial for receptor dimerization and DNA binding, this assumption has recently been challenged. Here we have analyzed the GR oligomerization state in vivo using the number and brightness assay. Our results suggest a complete, reversible, and DNA-independent ligand-induced model for GR dimerization. We demonstrate that the GRdim forms dimers in vivo whereas adding another mutation in the ligand-binding domain (I634A) severely compromises homodimer formation. Contrary to dogma, no correlation between the GR monomeric/dimeric state and transcriptional activity was observed. Finally, the state of dimerization affected DNA binding only to a subset of GR binding sites. These results have major implications on future searches for therapeutic glucocorticoids with reduced side effects.Fil: Presman, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Ogara, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Stortz, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Alvarez, Lautaro Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; ArgentinaFil: Pooley, John R.. National Cancer Institute. Laboratory of Receptor Biology and Gene Expression; Estados Unidos. University of Bristol; Reino UnidoFil: Schiltz, R. Louis. National Cancer Institute. Laboratory of Receptor Biology and Gene Expression; Estados UnidosFil: Grøntved, Lars. National Cancer Institute. Laboratory of Receptor Biology and Gene Expression; Estados UnidosFil: Johnson, Thomas A.. National Cancer Institute. Laboratory of Receptor Biology and Gene Expression; Estados UnidosFil: Mittelstadt, Paul R.. National Cancer Institute. Laboratory of Immune Cell Biology; Estados UnidosFil: Ashwell, Jonathan D.. National Cancer Institute. Laboratory of Immune Cell Biology; Estados UnidosFil: Ganesan, Sundar. National Cancer Institute. Laboratory of Receptor Biology and Gene Expression; Estados Unidos. National Institute of Allergy and Infectious Diseases; Estados UnidosFil: Burton, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; ArgentinaFil: Levi, Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Hager, Gordon L.. National Cancer Institute. Laboratory of Receptor Biology and Gene Expression; Estados UnidosFil: Pecci, Adali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentin
    corecore