28,065 research outputs found

    Exobiology on Mars

    Get PDF
    Descriptions of several instrument concepts that were generated during a workshop entitled, Exobiology Instrument Concepts for a Soviet Mars 94/94 Mission, held at NASA Ames Research Center in 1989 are presented. The objective was to define and describe instrument concepts for exobiology and related science that would be compatible with the mission types under discussion for the 1994 and 1996 Soviet Mars missions. Experiments that use existing technology were emphasized. The concepts discussed could also be used on U.S. missions that follow Mars Observer

    The 2p yields 1s pionic transition

    Get PDF
    Pion-atomic transitions, perturbation theory, S waves, and P wave

    Estimation in a growth study with irregular measurement times

    Get PDF
    Between 1982 and 1988 a growth study was carried out at the Division of Pediatric Oncology of the University Hospital of Groningen. A special feature of the project was that sample sizes are small and that ages at entry may be very different. In addition the intended design was not fully complied with. This paper highlights some aspects of the statistical analysis which is based on (1) reference scores, (2) statistical procedures allowing for an irregular pattern of measurement times caused by missing data and shifted measurement times

    Experimental determination of the degree of quantum polarisation of continuous variable states

    Get PDF
    We demonstrate excitation-manifold resolved polarisation characterisation of continuous-variable (CV) quantum states. In contrast to traditional characterisation of polarisation that is based on the Stokes parameters, we experimentally determine the Stokes vector of each excitation manifold separately. Only for states with a given photon number does the methods coincide. For states with an indeterminate photon number, for example Gaussian states, the employed method gives a richer and more accurate description. We apply the method both in theory and in experiment to some common states to demonstrate its advantages.Comment: 5 page

    Prediction of a surface state and a related surface insulator-metal transition for the (100) surface of stochiometric EuO

    Full text link
    We calculate the temperature and layer-dependent electronic structure of a 20-layer EuO(100)-film using a combination of first-principles and model calculation based on the ferromagnetic Kondo-lattice model. The results suggest the existence of a EuO(100) surface state which can lead to a surface insulator-metal transition.Comment: 9 pages, 5 figures, Phys. Rev. Lett. (in press

    The Kinematics in the Core of the Low Surface Brightness Galaxy DDO 39

    Full text link
    We present a high resolution, SparsePak two-dimensional velocity field for the center of the low surface brightness (LSB) galaxy DDO 39. These data are a significant improvement on previous HI or Halpha long slit data, yet the inner rotation curve is still uncertain due to significant noncircular and random motions. These intrinsic uncertainties, probably present in other LSB galaxies too, result in a wide range of inner slopes being consistent with the data, including those expected in cold dark matter (CDM) simulations. The halo concentration parameter provides a more useful test of cosmological models than the inner slope as it is more tightly constrained by observations. DDO 39's concentration parameter is consistent with, but on the low end of the distribution predicted by CDM.Comment: 4 pages, accepted for publication in ApJ Letter

    Accuracy control in ultra-large-scale electronic structure calculation

    Full text link
    Numerical aspects are investigated in ultra-large-scale electronic structure calculation. Accuracy control methods in process (molecular-dynamics) calculation are focused. Flexible control methods are proposed so as to control variational freedoms, automatically at each time step, within the framework of generalized Wannier state theory. The method is demonstrated in silicon cleavage simulation with 10^2-10^5 atoms. The idea is of general importance among process calculations and is also used in Krylov subspace theory, another large-scale-calculation theory.Comment: 8 pages, 3 figures. To appear in J.Phys. Condens. Matter. A preprint PDF file in better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses/index_e.htm

    The Reionization History and Early Metal Enrichment inferred from the Gamma-Ray Burst Rate

    Get PDF
    Based on the gamma-ray burst (GRB) event rate at redshifts of 4z124 \leq z \leq 12, which is assessed by the spectral peak energy-to-luminosity relation recently found by Yonetoku et al., we observationally derive the star formation rate (SFR) for Pop III stars in a high redshift universe. As a result, we find that Pop III stars could form continuously at 4z124 \leq z \leq 12. Using the derived Pop III SFR, we attempt to estimate the ultraviolet (UV) photon emission rate at 7z127 \leq z \leq 12 in which redshift range no observational information has been hitherto obtained on ionizing radiation intensity. We find that the UV emissivity at 7z127 \leq z \leq 12 can make a noticeable contribution to the early reionization. The maximal emissivity is higher than the level required to keep ionizing the intergalactic matter at 7z127 \leq z \leq 12. However, if the escape fraction of ionizing photons from Pop III objects is smaller than 10%, then the IGM can be neutralized at some redshift, which may lead to the double reionization. As for the enrichment, the ejection of all metals synthesized in Pop III objects is marginally consistent with the IGM metallicity, although the confinement of metals in Pop III objects can reduce the enrichment significantly.Comment: 12 pages, 2 figures, ApJL accepte

    Realistic Tight Binding Model for the Electronic Structure of II-VI Semiconductors

    Get PDF
    We analyze the electronic structure of group II-VI semiconductors obtained within LMTO approach in order to arrive at a realistic and minimal tight binding model, parameterized to provide an accurate description of both valence and conduction bands. It is shown that a nearest-neighbor sp3d5sp^3d^5 model is fairly sufficient to describe to a large extent the electronic structure of these systems over a wide energy range, obviating the use of any fictitious ss^* orbital. The obtained hopping parameters obey the universal scaling law proposed by Harrison, ensuring transferability to other systems. Furthermore, we show that certain subtle features in the bonding of these compounds require the inclusion of anion-anion interactions in addition to the nearest-neighbor cation-anion interactions.Comment: 9 pages, 9 figure

    GRB Energetics and the GRB Hubble Diagram: Promises and Limitations

    Full text link
    We present a complete sample of 29 GRBs for which it has been possible to determine temporal breaks (or limits) from their afterglow light curves. We interpret these breaks within the framework of the uniform conical jet model, incorporating realistic estimates of the ambient density and propagating error estimates on the measured quantities. In agreement with our previous analysis of a smaller sample, the derived jet opening angles of those 16 bursts with redshifts result in a narrow clustering of geometrically-corrected gamma-ray energies about E_gamma = 1.33e51 erg; the burst-to-burst variance about this value is a factor of 2.2. Despite this rather small scatter, we demonstrate in a series of GRB Hubble diagrams, that the current sample cannot place meaningful constraints upon the fundamental parameters of the Universe. Indeed for GRBs to ever be useful in cosmographic measurements we argue the necessity of two directions. First, GRB Hubble diagrams should be based upon fundamental physical quantities such as energy, rather than empirically-derived and physically ill-understood distance indicators. Second, a more homogeneous set should be constructed by culling sub-classes from the larger sample. These sub-classes, though now first recognizable by deviant energies, ultimately must be identifiable by properties other than those directly related to energy. We identify a new sub-class of GRBs (``f-GRBs'') which appear both underluminous by factors of at least 10 and exhibit a rapid fading at early times. About 10-20% of observed long-duration bursts appear to be f-GRBs.Comment: Accepted to the Astrophysical Journal (20 May 2003). 19 pages, 3 Postscript figure
    corecore