200 research outputs found

    Effect of Thickener Particle Geometry and Concentration on the Grease EHL Film Thickness at Medium Speeds

    Get PDF
    The aim of this paper was to understand the parameters influencing the grease film thickness in a rolling elastohydrodynamically lubricated contact under fully flooded conditions at medium speeds. Film thickness measurements were taken under pure rolling for six commercial greases and their bled oils. The grease film thickness was found to be higher than corresponding bled oil, suggesting the presence of thickener in the contact. No rheological properties (characterized by steady and dynamic shear) showed any direct relation to the film thickness of the studied greases. AFM measurements of the thickener microstructure, from which the dimensional properties of the thickener particles (fibers/platelets/spheres) were estimated, showed that the relative increase in the film thickness due to entrainment of the thickener was proportional to the ratio of thickener volume fraction to the size of the fibers/platelets/spheres. Hence, with the same concentration, smaller thickener particles lead to the generation of thicker films than larger thickener particles. Next, this relation was used to establish the percentage of the thickener particles passing through the contact. Depending on the grease type, between about 1 and 70 % of the thickener particles were found to travel through the contact

    FLUKA Monte Carlo for Basic Dosimetric Studies of Dual Energy Medical Linear Accelerator

    Get PDF
    General purpose Monte Carlo code for simulation of particle transport is used to study the basic dosimetric parameters like percentage depth dose and dose profiles and compared with the experimental measurements from commercial dual energy medical linear accelerator. Varian Clinac iX medical linear accelerator with dual energy photon beams (6 and 15 MV) is simulated using FLUKA. FLAIR is used to visualize and edit the geometry. Experimental measurements are taken for 100 cm source-to-surface (SSD) in 50 × 50 × 50 cm3 PTW water phantom using 0.12 cc cylindrical ionization chamber. Percentage depth dose for standard square field sizes and dose profiles for various depths are studied in detail. The analysis was carried out using ROOT (a DATA analysis frame work developed at CERN) system. Simulation result shows good agreement in percentage depth dose and beam profiles with the experimental measurements for Varian Clinac iX dual energy medical linear accelerator

    FLUKA Monte Carlo for Basic Dosimetric Studies of Dual Energy Medical Linear Accelerator

    Get PDF
    General purpose Monte Carlo code for simulation of particle transport is used to study the basic dosimetric parameters like percentage depth dose and dose profiles and compared with the experimental measurements from commercial dual energy medical linear accelerator. Varian Clinac iX medical linear accelerator with dual energy photon beams (6 and 15 MV) is simulated using FLUKA. FLAIR is used to visualize and edit the geometry. Experimental measurements are taken for 100 cm source-to-surface (SSD) in 50 × 50 × 50 cm3PTW water phantom using 0.12 cc cylindrical ionization chamber. Percentage depth dose for standard square field sizes and dose profiles for various depths are studied in detail. The analysis was carried out using ROOT (a DATA analysis frame work developed at CERN) system. Simulation result shows good agreement in percentage depth dose and beam profiles with the experimental measurements for Varian Clinac iX dual energy medical linear accelerator

    dosimetric studies of mixed energy intensity modulated radiation therapy for prostate cancer treatments

    Get PDF
    Dosimetric studies of mixed field photon beam intensity modulated radiation therapy (IMRT) for prostate cancer using pencil beam (PB) and collapsed cone convolution (CCC) algorithms using Oncentra MasterPlan treatment planning system (v. 4.3) are investigated in this study. Three different plans were generated using 6 MV, 15 MV, and mixed beam (both 6 and 15 MV). Fifteen patients with two sets of plans were generated: one by using PB and the other by using CCC for the same planning parameters and constraints except the beam energy. For each patient's plan of high energy photons, one set of photoneutron measurements using solid state neutron track detector (SSNTD) was taken for this study. Mean percentage ofV66 Gyin the rectum is18.55±2.8,14.58±2.1, and16.77±4.7for 6 MV, 15 MV, and mixed-energy plans, respectively. Mean percentage ofV66 Gyin bladder is16.54±2.1,17.42±2.1,and16.94±41.9for 6 MV, 15 MV, and mixed-energy plans, respectively. Mixed fields neutron contribution at the beam entrance surface is 45.62% less than at 15 MV photon beam. Our result shows that, with negligible neutron contributions, mixed field IMRT has considerable dosimetric advantage

    Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids

    Get PDF
    The objective of this study was to evaluate local molecular adaptations proposed to regulate protein synthesis in the mammary glands. It was hypothesized that AA and energy-yielding substrates independently regulate AA metabolism and protein synthesis in mammary glands by a combination of systemic and local mechanisms. Six primiparous mid-lactation Holstein cows with ruminal cannulas were randomly assigned to 4 treatment sequences in a replicated incomplete 4 x 4 Latin square design experiment. Treatments were abomasal infusions of casein and starch in a 2 x 2 factorial arrangement. All animals received the same basal diet (17.6% crude protein and 6.61 MJ of net energy for lactation/kg of DM) throughout the study. Cows were restricted to 70% of ad libitum intake and abomasally infused for 36 h with water, casein (0.86 kg/d), starch (2 kg/d), or a combination (2 kg/d starch + 0.86 kg/d casein) using peristaltic pumps. Milk yields and composition were assessed throughout the study. Arterial and venous plasma samples were collected every 20 min during the last 8 h of infusion to assess mammary uptake. Mammary biopsy samples were collected at the end of each infusion and assessed for the phosphorylation state of selected intracellular signaling molecules that regulate protein synthesis. Animals infused with casein had increased arterial concentrations of AA, increased mammary extraction of AA from plasma, either no change or a trend for reduced mammary AA clearance rates, and no change in milk protein yield. Animals infused with starch had increased milk and milk protein yields, increased mammary plasma flow, reduced arterial concentrations of AA, and increased mammary clearance rates and net uptake of some AA. Infusions of starch increased plasma concentrations of glucose, insulin, and insulin-like growth factor-I. Starch infusions increased phosphorylation of ribosomal protein S6 and endothelial nitric oxide synthase, consistent with changes in milk protein yields and plasma flow, respectively. Phosphorylation of the mammalian target of rapamycin was increased in response to starch only when casein was also infused. Thus, cell signaling molecules involved in the regulation of protein synthesis differentially responded to these nutritional stimuli. The hypothesized independent effects of casein and starch on animal metabolism and cell signaling were not observed, presumably because of the lack of a milk protein response to infused casein

    Variability in Coastal Flooding predictions due to forecast errors during Hurricane Arthur

    Get PDF
    Storm surge prediction models rely on an accurate representation of the wind conditions. In this paper, we examine the sensitivity of surge predictions to forecast uncertainties in the track and strength of a storm (storm strength is quantified by the power dissipation of the associated wind field). This analysis is performed using Hurricane Arthur (2014), a Category 2 hurricane, which made landfall along the North Carolina (NC) coast in early July 2014. Hindcast simulations of a coupled hydrodynamic-wave model are performed on a large unstructured mesh to analyze the surge impact of Arthur along the NC coastline. The effects of Arthur are best represented by a post-storm data assimilated wind product with parametric vortex winds providing a close approximation. Surge predictions driven by forecast advisories issued by the National Hurricane Center (NHC) during Arthur are analyzed. The storm track predictions from the NHC improve over time. However, successive advisories predict an unrealistic increase in the storm's strength. Due to these forecast errors, the global root mean square errors of the predicted wind speeds and water levels increase as the storm approaches landfall. The relative impacts of the track and strength errors on the surge predictions are assessed by replacing forecast storm parameters with the best known post-storm information about Arthur. In a “constant track” analysis, Arthur's post storm determined track is used in place of the track predictions of the different advisories but each advisory retains its size and intensity predictions. In a “constant storm strength” analysis, forecast wind and pressure parameters are replaced by corresponding parameters extracted from the post storm analysis while each advisory retains its forecast storm track. We observe a strong correlation between the forecast errors and the wind speed predictions. However, the correlation between these errors and the forecast water levels is weak signifying a non-linear response of the shallow coastal waters to meteorological forcing

    MuSiC: Identifying mutational significance in cancer genomes

    Get PDF
    Massively parallel sequencing technology and the associated rapidly decreasing sequencing costs have enabled systemic analyses of somatic mutations in large cohorts of cancer cases. Here we introduce a comprehensive mutational analysis pipeline that uses standardized sequence-based inputs along with multiple types of clinical data to establish correlations among mutation sites, affected genes and pathways, and to ultimately separate the commonly abundant passenger mutations from the truly significant events. In other words, we aim to determine the Mutational Significance in Cancer (MuSiC) for these large data sets. The integration of analytical operations in the MuSiC framework is widely applicable to a broad set of tumor types and offers the benefits of automation as well as standardization. Herein, we describe the computational structure and statistical underpinnings of the MuSiC pipeline and demonstrate its performance using 316 ovarian cancer samples from the TCGA ovarian cancer project. MuSiC correctly confirms many expected results, and identifies several potentially novel avenues for discovery

    Measurement and analysis of photonuclear reactions on thick target samples of biological importance

    Get PDF
    404-408A novel method for quantification of trace elements in herbal samples using photon activation analysis is reported. Seven trace elements have been detected and their concentrations have been estimated from residue yields after the photo-nuclear reaction. This method can complement the conventional neutron activation analysis for trace elemental detection. The data is useful for setting referral standards for quality assurance of herbs and herbal formulations commercially available for therapeutic purposes. This is a relatively simple, novel and sensitive method for trace elemental analysis which can be scaled to suit industrial and statutory requirements of standardization and quality control

    Measurement and analysis of photonuclear reactions on thick target samples of biological importance

    Get PDF
    A novel method for quantification of trace elements in herbal samples using photon activation analysis is reported. Seven trace elements have been detected and their concentrations have been estimated from residue yields after the photo-nuclear reaction. This method can complement the conventional neutron activation analysis for trace elemental detection. The data is useful for setting referral standards for quality assurance of herbs and herbal formulations commercially available for therapeutic purposes. This is a relatively simple, novel and sensitive method for trace elemental analysis which can be scaled to suit industrial and statutory requirements of standardization and quality control
    corecore