117 research outputs found

    Live Recombinant Salmonella Typhi Vaccines Constructed to Investigate the Role of rpoS in Eliciting Immunity to a Heterologous Antigen

    Get PDF
    We hypothesized that the immunogenicity of live Salmonella enterica serovar Typhi vaccines expressing heterologous antigens depends, at least in part, on its rpoS status. As part of our project to develop a recombinant attenuated S. Typhi vaccine (RASTyV) to prevent pneumococcal diseases in infants and children, we constructed three RASTyV strains synthesizing the Streptococcus pneumoniae surface protein PspA to test this hypothesis. Each vector strain carried ten engineered mutations designed to optimize safety and immunogenicity. Two S. Typhi vector strains (χ9639 and χ9640) were derived from the rpoS mutant strain Ty2 and one (χ9633) from the RpoS+ strain ISP1820. In χ9640, the nonfunctional rpoS gene was replaced with the functional rpoS gene from ISP1820. Plasmid pYA4088, encoding a secreted form of PspA, was moved into the three vector strains. The resulting RASTyV strains were evaluated for safety in vitro and for immunogenicity in mice. All three RASTyV strains were similar to the live attenuated typhoid vaccine Ty21a in their ability to survive in human blood and human monocytes. They were more sensitive to complement and were less able to survive and persist in sewage and surface water than their wild-type counterparts. Adult mice intranasally immunized with any of the RASTyV strains developed immune responses against PspA and Salmonella antigens. The RpoS+ vaccines induced a balanced Th1/Th2 immune response while the RpoS− strain χ9639(pYA4088) induced a strong Th2 immune response. Immunization with any RASTyV provided protection against S. pneumoniae challenge; the RpoS+ strain χ9640(pYA4088) provided significantly greater protection than the ISP1820 derivative, χ9633(pYA4088). In the pre-clinical setting, these strains exhibited a desirable balance between safety and immunogenicity and are currently being evaluated in a Phase 1 clinical trial to determine which of the three RASTyVs has the optimal safety and immunogenicity profile in human hosts

    Improving Salmonella vector with rec mutation to stabilize the DNA cargoes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Salmonella </it>has been employed to deliver therapeutic molecules against cancer and infectious diseases. As the carrier for target gene(s), the cargo plasmid should be stable in the bacterial vector. Plasmid recombination has been reduced in <it>E. coli </it>by mutating several genes including the <it>recA</it>, <it>recE</it>, <it>recF </it>and <it>recJ</it>. However, to our knowledge, there have been no published studies of the effect of these or any other genes that play a role in plasmid recombination in <it>Salmonella enterica</it>.</p> <p>Results</p> <p>The effect of <it>recA</it>, <it>recF </it>and <it>recJ </it>deletions on DNA recombination was examined in three serotypes of <it>Salmonella enterica</it>. We found that (1) intraplasmid recombination between direct duplications was RecF-independent in Typhimurium and Paratyphi A, but could be significantly reduced in Typhi by a Δ<it>recA </it>or Δ<it>recF </it>mutation; (2) in all three <it>Salmonella </it>serotypes, both Δ<it>recA </it>and Δ<it>recF </it>mutations reduced intraplasmid recombination when a 1041 bp intervening sequence was present between the duplications; (3) Δ<it>recA </it>and Δ<it>recF </it>mutations resulted in lower frequencies of interplasmid recombination in Typhimurium and Paratyphi A, but not in Typhi; (4) in some cases, a Δ<it>recJ </it>mutation could reduce plasmid recombination but was less effective than Δ<it>recA </it>and Δ<it>recF </it>mutations. We also examined chromosome-related recombination. The frequencies of intrachromosomal recombination and plasmid integration into the chromosome were 2 and 3 logs lower than plasmid recombination frequencies in Rec<sup>+ </sup>strains. A Δ<it>recA </it>mutation reduced both intrachromosomal recombination and plasmid integration frequencies.</p> <p>Conclusions</p> <p>The Δ<it>recA </it>and Δ<it>recF </it>mutations can reduce plasmid recombination frequencies in <it>Salmonella enterica</it>, but the effect can vary between serovars. This information will be useful for developing <it>Salmonella </it>delivery vectors able to stably maintain plasmid cargoes for vaccine development and gene therapy.</p

    Electron affinities of the first- and second- row atoms: benchmark ab initio and density functional calculations

    Full text link
    A benchmark ab initio and density functional (DFT) study has been carried out on the electron affinities of the first- and second-row atoms. The ab initio study involves basis sets of spdfghspdfgh and spdfghispdfghi quality, extrapolations to the 1-particle basis set limit, and a combination of the CCSD(T), CCSDT, and full CI electron correlation methods. Scalar relativistic and spin-orbit coupling effects were taken into account. On average, the best ab initio results agree to better than 0.001 eV with the most recent experimental results. Correcting for imperfections in the CCSD(T) method improves the mean absolute error by an order of magnitude, while for accurate results on the second-row atoms inclusion of relativistic corrections is essential. The latter are significantly overestimated at the SCF level; for accurate spin-orbit splitting constants of second-row atoms inclusion of (2s,2p) correlation is essential. In the DFT calculations it is found that results for the 1st-row atoms are very sensitive to the exchange functional, while those for second-row atoms are rather more sensitive to the correlation functional. While the LYP correlation functional works best for first-row atoms, its PW91 counterpart appears to be preferable for second-row atoms. Among ``pure DFT'' (nonhybrid) functionals, G96PW91 (Gill 1996 exchange combined with Perdew-Wang 1991 correlation) puts in the best overall performance. The best results overall are obtained with the 1-parameter hybrid modified Perdew-Wang (mPW1) exchange functionals of Adamo and Barone [J. Chem. Phys. {\bf 108}, 664 (1998)], with mPW1LYP yielding the best results for first-row, and mPW1PW91 for second-row atoms. Indications exist that a hybrid of the type aa mPW1LYP + (1−a)(1-a) mPW1PW91 yields better results than either of the constituent functionals.Comment: Phys. Rev. A, in press (revised version, review of issues concerning DFT and electron affinities added

    The Aspartate-Semialdehyde Dehydrogenase of Edwardsiella ictaluri and Its Use as Balanced-Lethal System in Fish Vaccinology

    Get PDF
    asdA mutants of Gram-negative bacteria have an obligate requirement for diaminopimelic acid (DAP), which is an essential constituent of the peptidoglycan layer of the cell wall of these organisms. In environments deprived of DAP, i.e., animal tissues, they will undergo lysis. Deletion of the asdA gene has previously been exploited to develop antibiotic-sensitive strains of live attenuated recombinant bacterial vaccines. Introduction of an Asd+ plasmid into a ΔasdA mutant makes the bacterial strain plasmid-dependent. This dependence on the Asd+ plasmid vector creates a balanced-lethal complementation between the bacterial strain and the recombinant plasmid. E. ictaluri is an enteric Gram-negative fish pathogen that causes enteric septicemia in catfish. Because E. ictaluri is a nasal/oral invasive intracellular pathogen, this bacterium is a candidate to develop a bath/oral live recombinant attenuated Edwardsiella vaccine (RAEV) for the catfish aquaculture industry. As a first step to develop an antibiotic-sensitive RAEV strain, we characterized and deleted the E. ictaluri asdA gene. E. ictaluri ΔasdA01 mutants exhibit an absolute requirement for DAP to grow. The asdA gene of E. ictaluri was complemented by the asdA gene from Salmonella. Several Asd+ expression vectors with different origins of replication were transformed into E. ictaluri ΔasdA01. Asd+ vectors were compatible with the pEI1 and pEI2 E. ictaluri native plasmids. The balanced-lethal system was satisfactorily evaluated in vivo. Recombinant GFP, PspA, and LcrV proteins were synthesized by E. ictaluri ΔasdA01 harboring Asd+ plasmids. Here we constructed a balanced-lethal system, which is the first step to develop an antibiotic-sensitive RAEV for the aquaculture industry

    Lrp Acts as Both a Positive and Negative Regulator for Type 1 Fimbriae Production in Salmonella enterica Serovar Typhimurium

    Get PDF
    Leucine-responsive regulatory protein (Lrp) is known to be an indirect activator of type 1 fimbriae synthesis in Salmonella enterica serovar Typhimurium via direct regulation of FimZ, a direct positive regulator for type 1 fimbriae production. Using RT-PCR, we have shown previously that fimA transcription is dramatically impaired in both lrp-deletion (Δlrp) and constitutive-lrp expression (lrpC) mutant strains. In this work, we used chromosomal PfimA-lacZ fusions and yeast agglutination assays to confirm and extend our previous results. Direct binding of Lrp to PfimA was shown by an electrophoretic mobility shift assay (EMSA) and DNA footprinting assay. Site-directed mutagenesis revealed that the Lrp-binding motifs in PfimA play a role in both activation and repression of type 1 fimbriae production. Overproduction of Lrp also abrogates fimZ expression. EMSA data showed that Lrp and FimZ proteins independently bind to PfimA without competitive exclusion. In addition, both Lrp and FimZ binding to PfimA caused a hyper retardation (supershift) of the DNA-protein complex compared to the shift when each protein was present alone. Nutrition-dependent cellular Lrp levels closely correlated with the amount of type 1 fimbriae production. These observations suggest that Lrp plays important roles in type 1 fimbriation by acting as both a positive and negative regulator and its effect depends, at least in part, on the cellular concentration of Lrp in response to the nutritional environment

    Type 1 Fimbriae, a Colonization Factor of Uropathogenic Escherichia coli, Are Controlled by the Metabolic Sensor CRP-cAMP

    Get PDF
    Type 1 fimbriae are a crucial factor for the virulence of uropathogenic Escherichia coli during the first steps of infection by mediating adhesion to epithelial cells. They are also required for the consequent colonization of the tissues and for invasion of the uroepithelium. Here, we studied the role of the specialized signal transduction system CRP-cAMP in the regulation of type 1 fimbriation. Although initially discovered by regulating carbohydrate metabolism, the CRP-cAMP complex controls a major regulatory network in Gram-negative bacteria, including a broad subset of genes spread into different functional categories of the cell. Our results indicate that CRP-cAMP plays a dual role in type 1 fimbriation, affecting both the phase variation process and fimA promoter activity, with an overall repressive outcome on fimbriation. The dissection of the regulatory pathway let us conclude that CRP-cAMP negatively affects FimB-mediated recombination by an indirect mechanism that requires DNA gyrase activity. Moreover, the underlying studies revealed that CRP-cAMP controls the expression of another global regulator in Gram-negative bacteria, the leucine-responsive protein Lrp. CRP-cAMP-mediated repression is limiting the switch from the non-fimbriated to the fimbriated state. Consistently, a drop in the intracellular concentration of cAMP due to altered physiological conditions (e.g. growth in presence of glucose) increases the percentage of fimbriated cells in the bacterial population. We also provide evidence that the repression of type 1 fimbriae by CRP-cAMP occurs during fast growth conditions (logarithmic phase) and is alleviated during slow growth (stationary phase), which is consistent with an involvement of type 1 fimbriae in the adaptation to stress conditions by promoting biofilm growth or entry into host cells. Our work suggests that the metabolic sensor CRP-cAMP plays a role in coupling the expression of type 1 fimbriae to environmental conditions, thereby also affecting subsequent attachment and colonization of host tissues

    A Regional Ground-Water Quality Characterization of the Rockford Area, Winnebago County, Illinois

    Get PDF
    This report summarizes an investigation of regional ground-water quality in the Rockford area in north-central Illinois. The investigation was launched to determine if regional ground-water contamination, principally by volatile organic compounds (VOCS), has occurred in the Rockford area. A number of investigations conducted by local and state agencies have documented the presence of VOCs in the ground water at several locations in or near the city of Rockford, Illinois. An estimated 300 wells, including 16 public water supply wells, have been affected by the presence of organic compounds in over 20 instances of ground-water contamination in Winnebago County documented since 1970. Analysis of ground-water samples was undertaken in a 76-square mile area around Rockford to examine the potential for regional contamination of ground water by hazardous substances. Sixty-nine private domestic and industrial wells were sampled and analyzed for 18 VOCs and 4 trace metals. Results of these determinations were compiled along with information from previous investigations, including Illinois Environmental Protection Agency sampling results from 48 local municipal water wells, to determine areas of ground-water contamination within the study area. Ground-water (depth-to-water) measurements were also obtained, and a map of the potentiometric surface of the sand and gravel aquifer was prepared to determine the direction of ground-water movement. The locations of industrial facilities that may be handling hazardous substances were also mapped. Total VOC concentrations found in the sampled wells ranged from nondetectable to over 500 ~g L-1. Of the 69 wells sampled, ten contained 5 ~g L-1 or more total VOCs. Of those ten, seven contained concentrations in excess of the U.S. Environmental Protection Agency (USEPA) Recommended Maximum Contaminant Level (RMCL) of 5 ~g L-1 for trichloroethene (TCE) in drinking water. Two of those wells also exceeded the USEPA lifetime health advisory of 70 ~g L-1 for cis-1,2-dichloroethene. None of the wells sampled exceeded the RMCL for any of the four trace metals. Despite the fact that several wells were found to contain VOCs, the preponderance of information collected during this study shows that regional contamination of ground water in the Rockford area has not occurred. Much of the ground water used by the residents and industry in the Rockford area was found to be of satisfactory quality with regard to VOCs and selected trace metals. However, this information should not minimize the problems identified in several parts of Rockford. One area in southeast Rockford is significantly contaminated with VOCs. Over 100 homes in the area obtain water from shallow wells water with total VOC concentrations in excess of 100 ~g 1-1. The USEPA RMCL for many of these contaminants is only 5 ~g 1-1. A more detailed investigation of this area conducted by the Winnebago County Health Department in 1984 produced similar results. Data collected from these two investigations show that the contamination extends approximately two miles from 20th Street west to the Rock River. A nearby public water supply well, Rockford Unit Well 35, is finished much deeper in the sand and gravel and also exhibits elevated vac concentrations. The area is bordered by a variety of industrial facilities that may have introduced the contaminants into the ground water. More specific information on the contaminated area is needed to develop water supply alternatives for the residents of the area and to provide better management of the ground-water resource for public and industrial use. Follow-up investigations should be conducted to determine the source, magnitude, and extent of contamination in southeast Rockford. The response of contaminant movement to various pumping patterns created by the numerous high-capacity wells in the area should be evaluated. Such investigations will provide information important to the implementation of possible ground-water protection measures in the Rockford area. A methodology for the investigation of regional ground-water quality is also presented in the report. This methodology is presented as a guide for planning and executing similar investigations in Illinois. This methodology should help to provide some consistency in the design of such efforts undertaken by other groups or agencies in the state.HWRIC Project Number HW86-012published or submitted for publicationis peer reviewe

    Evaluation of Recombinant Attenuated Salmonella Vaccine Strains for Broad Protection against Extraintestinal Pathogenic Escherichia coli

    No full text
    Antibiotic-resistant bacterial infections are difficult to treat, producing a burden on healthcare and the economy. Extraintestinal pathogenic Escherichia coli (ExPEC) strains frequently carry antibiotic resistance genes, cause infections outside of the intestine, and are causative agents of hospital-acquired infections. Developing a prevention strategy against this pathogen is challenging due to its antibiotic resistance and antigenic diversity. E. coli common pilus (ECP) is frequently found in ExPEC strains and may serve as a common antigen to induce protection against several ExPEC serotypes. In addition, live recombinant attenuated Salmonella vaccine (RASV) strains have been used to prevent Salmonella infection and can also be modified to deliver foreign antigens. Thus, the objective of this study was to design a RASV to produce ECP on its surface and assess its ability to provide protection against ExPEC infections. To constitutively display ECP in a RASV strain, we genetically engineered a vector (pYA4428) containing aspartate-β-semialdehyde dehydrogenase and E. coli ecp genes and introduced it into RASV χ9558. RASV χ9558 containing an empty vector (pYA3337) was used as a control to assess protection conferred by the RASV strain without ECP. We assessed vaccine efficacy in in vitro bacterial inhibition assays and mouse models of ExPEC-associated human infections. We found that RASV χ9558(pYA4428) synthesized the major pilin (EcpA) and tip pilus adhesin (EcpD) on the bacterial surface. Mice orally vaccinated with RASV χ9558(pYA3337) without ECP or χ9558(pYA4428) with ECP, produced anti-Salmonella LPS and anti-E. coli EcpA and EcpD IgG and IgA antibodies. RASV strains showed protective potential against some E. coli and Salmonella strains as assessed using in vitro assays. In mouse sepsis and urinary tract infection challenge models, both vaccines had significant protection in some internal organs. Overall, this work showed that RASVs can elicit an immune response to E. coli and Salmonella antigens in some mice, provide significant protection in some internal organs during ExPEC challenge, and thus this study is a promising initial step toward developing a vaccine for prevention of ExPEC infections. Future studies should optimize the ExPEC antigens displayed by the RASV strain for a more robust immune response and enhanced protection against ExPEC infection
    • …
    corecore