30 research outputs found

    Optimal design of thermally stable proteins

    Get PDF
    Motivation: For many biotechnological purposes, it is desirable to redesign proteins to be more structurally and functionally stable at higher temperatures. For example, chemical reactions are intrinsically faster at higher temperatures, so using enzymes that are stable at higher temperatures would lead to more efficient industrial processes. We describe an innovative and computationally efficient method called Improved Configurational Entropy (ICE), which can be used to redesign a protein to be more thermally stable (i.e. stable at high temperatures). This can be accomplished by systematically modifying the amino acid sequence via local structural entropy (LSE) minimization. The minimization problem is modeled as a shortest path problem in an acyclic graph with nonnegative weights and is solved efficiently using Dijkstra's method

    WNT activates the AAK1 kinase to promote clathrin-mediated endocytosis of LRP6 and establish a negative feedback loop

    Get PDF
    beta-Catenin-dependent WNT signal transduction governs development, tissue homeostasis, and a vast array of human diseases. Signal propagation through a WNT-Frizzled/LRP receptor complex requires proteins necessary for clathrin-mediated endocytosis (CME). Paradoxically, CME also negatively regulates WNT signaling through internalization and degradation of the receptor complex. Here, using a gain-of-function screen of the human kinome, we report that the AP2 associated kinase 1 (AAK1), a known CME enhancer, inhibits WNT signaling. Reciprocally, AAK1 genetic silencing or its pharmacological inhibition using a potent and selective inhibitor activates WNT signaling. Mechanistically, we show that AAK1 promotes clearance of LRP6 from the plasma membrane to suppress the WNT pathway. Time-course experiments support a transcription-uncoupled, WNT-driven negative feedback loop; prolonged WNT treatment drives AAK1-dependent phosphorylation of AP2M1, clathrin-coated pit maturation, and endocytosis of LRP6. We propose that, following WNT receptor activation, increased AAK1 function and CME limits WNT signaling longevity2617993FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2013/50724-5; 2016/17469-0M.B.M. acknowledges support from the NIH (RO1-CA187799 and U24-DK116204-01). M.J.A. received financial support from NIH T32 Predoctoral Training Grants in Pharmacology (T32-GM007040-43 and T32-GM007040-42), an Initiative for Maximizing Student Diversity Grant (R25-GM055336-16), and the NIH National Cancer Institute (NCI) NRSA Predoctoral Fellowship to Promote Diversity in Health-Related Research (F31CA228289). M.P.W. received support from the Lymphoma Research Foundation (337444) and the NIH (T32-CA009156-35). Y.N. was supported by grants-in-aid from the Japan Society for the Promotion of Science (JSPS) (15KK0356 and 16K11493). T.T. was supported by the Howard Hughes Medical Institute Gilliam Fellowship for Advanced Study. M.V.G. was supported by Cancer Research UK (grants C7379/A15291 and C7379/A24639 to Mariann Bienz). The UNC Flow Cytometry Core Facility is supported in part by Cancer Center Core Support Grant P30 CA016086 to the UNC Lineberger Comprehensive Cancer Center, and research reported in this publication was supported by the Center for AIDS Research (award number 5P30AI050410), and the content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The Structural Genomics Consortium (SGC) is a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, the Canada Foundation for Innovation, the Eshelman Institute for Innovation, Genome Canada, the Innovative Medicines Initiative (European Union [EU]/European Federation of Pharmaceutical Industries and Associations [EFPIA]) (ULTRA-DD grant no. 115766), Janssen, Merck & Company, Merck KGaA, Novartis Pharma AG, the Ontario Ministry of Economic Development and Innovation, Pfizer, the São Paulo Research Foundation (FAPESP) (2013/50724-5), Takeda, and the Wellcome Trust (106169/ZZ14/Z). R.R.R. received financial support from FAPESP (2016/17469-0). We would also like to thank Claire Strain-Damerell and Pavel Savitsky for cloning various mutants of AAK1 and BMP2K proteins that were used in the crystallization trials. Additionally, we thank Dr. Sean Conner for providing the AAK1 plasmids, Dr. Stephane Angers for kindly providing the HEK293T DVL TKO cells, and Dr. Mariann Bienz for providing comments and feedback. We would like to thank members of the Major laboratory for their feedback and expertise regarding experimental design and project directio

    Prokaryotic substrate-binding proteins as targets for antimicrobial therapies

    No full text
    The rapid emergence of multidrug-resistant bacteria over the last two decades has catalyzed a shift away from traditional antibiotic development strategies and encouraged the search for unconventional drug targets. Prokaryotic substrate- binding proteins (SBPs), together with their cognate ATP-binding cassette (ABC) transporters, facilitate the unidirectional, transbilayer movement of specific extracytosolic cargoes against a concentration gradient, powered by ATP hydrolysis. In Gram-negative bacteria, SBPs are found in the periplasmic space, whereas in Gram-positive organisms these proteins are anchored to the outer cell wall by a lipid moiety. SBPs are vital components of the substrate-translocation machinery, as they determine cargo specificity and are involved in coupling the cargo uptake process with ABC transporter- mediated ATP hydrolysis. In this review, we focus on "Cluster A-1" divalent metal-binding proteins from within the SBP family. Acquisition of transition row metal ions is essential for bacterial colonization and virulence and Cluster A-1 SBPs play an integral role in this process. Cluster A-1 SBPs lack homologs in humans, bypass the need to deliver compounds into the bacterial cell, and are therefore potential drug targets against Gram-positive bacteria. Here we discuss the role SBPs play in the prokaryotic substrate-translocation machinery with emphasis in the substrate-binding mechanism of Cluster A-1 SBPs, the role of these proteins in virulence and their potential use as drug targets.M. Counago, Rafael; A. McDevitt, Christopher; P. Ween, Miranda; Kobe, Bostja

    Imperfect coordination chemistry facilitates metal ion release in the Psa permease

    No full text
    The relative stability of divalent first-row transition metal ion complexes, as defined by the Irving-Williams series, poses a fundamental chemical challenge for selectivity in bacterial metal ion acquisition. Here we show that although the substrate-binding protein of Streptococcus pneumoniae, PsaA, is finely attuned to bind its physiological substrate manganese, it can also bind a broad range of other divalent transition metal cations. By combining high-resolution structural data, metal-binding assays and mutational analyses, we show that the inability of open-state PsaA to satisfy the preferred coordination chemistry of manganese enables the protein to undergo the conformational changes required for cargo release to the Psa permease. This is specific for manganese ions, whereas zinc ions remain bound to PsaA. Collectively, these findings suggest a new ligand binding and release mechanism for PsaA and related substrate-binding proteins that facilitate specificity for divalent cations during competition from zinc ions, which are more abundant in biological systems.Rafael M Couñago, Miranda P Ween, Stephanie L Begg, Megha Bajaj, Johannes Zuegg, Megan L O’Mara, Matthew A Cooper, Alastair G McEwan, James C Paton, Bostjan Kobe, & Christopher A McDevit

    AdcA and AdcAII employ distinct zinc acquisition mechanisms and contribute additively to zinc homeostasis in Streptococcus pneumoniae

    No full text
    Streptococcus pneumoniae is a globally significant human pathogen responsible for nearly 1 million deaths annually. Central to the ability of S.pneumoniae to colonize and mediate disease in humans is the acquisition of zinc from the host environment. Zinc uptake in S.pneumoniae occurs via the ATP-binding cassette transporter AdcCB, and, unusually, two zinc-binding proteins, AdcA and AdcAII. Studies have suggested that these two proteins are functionally redundant, although AdcA has remained uncharacterized by biochemical methods. Here we show that AdcA is a zinc-specific substrate-binding protein (SBP). By contrast with other zinc-binding SBPs, AdcA has two zinc-binding domains: a canonical amino-terminal cluster A-I zinc-binding domain and a carboxy-terminal zinc-binding domain, which has homology to the zinc-chaperone ZinT from Gram-negative organisms. Intriguingly, this latter feature is absent from AdcAII and suggests that the two zinc-binding SBPs of S.pneumoniae employ different modalities in zinc recruitment. We further show that AdcAII is reliant upon the polyhistidine triad proteins for zinc in vitro and in vivo. Collectively, our studies suggest that, despite the overlapping roles of the two SBPs in zinc acquisition, they may have unique mechanisms in zinc homeostasis and act in a complementary manner during host colonization

    Bioinformatic method for protein thermal stabilization by structural entropy optimization

    No full text
    Engineering proteins for higher thermal stability is an important and difficult challenge. We describe a bioinformatic method incorporating sequence alignments to redesign proteins to be more stable through optimization of local structural entropy. Using this method, improved configurational entropy (ICE), we were able to design more stable variants of a mesophilic adenylate kinase with only the sequence information of one psychrophilic homologue. The redesigned proteins display considerable increases in their thermal stabilities while still retaining catalytic activity. ICE does not require a three-dimensional structure or a large number of homologous sequences, indicating a broad applicability of this method. Our results also highlight the importance of entropy in the stability of protein structures

    Development of pyridine-based inhibitors for the human vaccinia-related kinases 1 and 2

    No full text
    Vaccinia-related kinases 1 and 2 (VRK1 and VRK2) are human Ser/Thr protein kinases associated with increased cell division and neurological disorders. Nevertheless, the cellular functions of these proteins are not fully understood. Despite their therapeutic potential, there are no potent and specific inhibitors available for VRK1 or VRK2. We report here the discovery and elaboration of an aminopyridine scaffold as a basis for VRK1 and VRK2 inhibitors. The most potent compound for VRK1 (26) displayed an IC50 value of 150 nM and was fairly selective in a panel of 48 human kinases (selectivity score S(50%) of 0.04). Differences in compound binding mode and substituent preferences between the two VRKs were identified by the structure-activity relationship combined with the crystallographic analysis of key compounds. We expect our results to serve as a starting point for the design of more specific and potent inhibitors against each of the two VRKs10912661271CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP465651/2014-3; 400906/2014-788887.146077/2017-00; 88887.136342/2017-002013/50724-5; 2014/5087-0; 2016/25320-6; 2018/09475-5; 2018/03359-3This work was supported by the Brazilian agencies FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) (2013/50724-5 and 2014/5087-0), Embrapii (Empresa Brasileira de Pesquisa e Inovação Industrial), and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) (465651/2014-3 and 400906/2014-7). The SGC is a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada, Innovative Medicines Initiative (EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen, Merck KGaA Darmstadt Germany, MSD, Novartis Pharma AG, Ontario Ministry of Economic Development and Innovation, Pfizer, Takeda, and Wellcome [106169/ZZ14/Z]. R.A.M.S., S.N.S.V. and F.D.P. received FAPESP fellowships (2016/25320-6, 2018/09475-5 and 2018/03359-3 respectively). C.V.R. and A.S.S. received CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) postdoctoral fellowships (88887.146077/2017-00 and 88887.136342/2017-00, respectively

    A Chemical Probe Targeting AAK1 and BMP2K

    No full text
    Inhibitors based on a 3-acylaminoindazole scaffold were synthesized to yield potent dual AAK1/BMP2K inhibitors. Optimization of this 3-acylaminoindazole scaffold furnished a small molecule chemical probe (SGC-AAK1-1, 25) that is potent and selective for AAK1/BMP2K over other NAK family members, demonstrates narrow activity in a kinome-wide screen, and is functionally active in cells. This inhibitor represents one of the best available small molecule tools to study the functions of AAK1 and BMP2K.</p

    PEACE V - Salvage Treatment of OligoRecurrent nodal prostate cancer Metastases (STORM): a study protocol for a randomized controlled phase II trial

    No full text
    BACKGROUND: Pelvic nodal recurrences are being increasingly diagnosed with the introduction of new molecular imaging techniques, like choline and PSMA PET-CT, in the restaging of recurrent prostate cancer (PCa). At this moment, there are no specific treatment recommendations for patients with limited nodal recurrences and different locoregional treatment approaches are currently being used, mostly by means of metastasis-directed therapies (MDT): salvage lymph node dissection (sLND) or stereotactic body radiotherapy (SBRT). Since the majority of patients treated with MDT relapse within 2 years in adjacent lymph node regions, with an estimated median time to progression of 12-18 months, combining MDT with whole pelvic radiotherapy (WPRT) may improve oncological outcomes in these patients. The aim of this prospective multicentre randomized controlled phase II trial is to assess the impact of the addition of WPRT to MDT and short-term androgen deprivation therapy (ADT) on metastasis-free survival (MFS) in the setting of oligorecurrent pelvic nodal recurrence. METHODS & DESIGN: Patients diagnosed with PET-detected pelvic nodal oligorecurrence (≤5 nodes) following radical local treatment for PCa, will be randomized in a 1:1 ratio between arm A: MDT and 6 months of ADT, or arm B: WPRT added to MDT and 6 months of ADT. Patients will be stratified by type of PET-tracer (choline, FACBC or PSMA) and by type of MDT (sLND or SBRT). The primary endpoint is MFS and the secondary endpoints include clinical and biochemical progression-free survival (PFS), prostate cancer specific survival, quality of life (QoL), toxicity and time to castration-resistant prostate cancer (CRPC) and to palliative ADT. Estimated study completion: December 31, 2023. DISCUSSION: This is the first prospective multicentre randomized phase II trial assessing the potential of combined WPRT and MDT as compared to MDT alone on MFS for patients with nodal oligorecurrent PCa. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03569241, registered June 14, 2018, ; Identifier on Swiss National Clinical Trials Portal (SNCTP): SNCTP000002947, registered June 14, 2018.status: publishe
    corecore