4,925 research outputs found

    Gaelic at the University of Glasgow: interest, abilities and attitudes

    Get PDF

    Modernization and new technologies: Coping with the information explosion

    Get PDF
    Information has become a valuable and strategic resource in all societies and economies. Scientific and technical information is especially important in developing and maintaining a strong national science and technology base. The expanding use of information technology, the growth of interdisciplinary research, and an increase in international collaboration are changing characteristics of information. This modernization effort applies new technology to current processes to provide near-term benefits to the user. At the same time, we are developing a long-term modernization strategy designed to transition the program to a multimedia, global 'library without walls'. Notwithstanding this modernization program, it is recogized that no one information center can hope to collect all the relevant data. We see information and information systems changing and becoming more international in scope. We are finding that many nations are expending resources on national systems which duplicate each other. At the same time that this duplication exists, many useful sources of aerospace information are not being collected to cover expanded sources of information. This paper reviews the NASA modernization program and raises for consideration new possibilities for unification of the various aerospace database efforts toward a cooperative international aerospace database initiative, one that can optimize the cost/benefit equation for all participants

    The Square Root Depth Wave Equations

    Full text link
    We introduce a set of coupled equations for multilayer water waves that removes the ill-posedness of the multilayer Green-Naghdi (MGN) equations in the presence of shear. The new well-posed equations are Hamiltonian and in the absence of imposed background shear they retain the same travelling wave solutions as MGN. We call the new model the Square Root Depth equations, from the modified form of their kinetic energy of vertical motion. Our numerical results show how the Square Root Depth equations model the effects of multilayer wave propagation and interaction, with and without shear.Comment: 10 pages, 5 figure

    Bioengineering Lantibiotics for Therapeutic Success

    Get PDF
    peer-reviewedSeveral examples of highly modified antimicrobial peptides have been described. While many such peptides are non-ribosomally synthesized, ribosomally synthesized equivalents are being discovered with increased frequency. Of the latter group, the lantibiotics continue to attract most attention. In the present review, we discuss the implementation of in vivo and in vitro engineering systems to alter, and even enhance, the antimicrobial activity, antibacterial spectrum and physico-chemical properties, including heat stability, solubility, diffusion and protease resistance, of these compounds. Additionally, we discuss the potential applications of these lantibiotics for use as therapeutics.DF,CH,PC,RR are supported by the Irish Government under the National Development Plan, through a Science Foundation Ireland (SFI) Technology and Innovation Development Award (TIDA14/TIDA/2286) to DF, a SFI Investigator awards to CH and RR (10/IN.1/B3027),SFI-PIfunding(11/PI/1137) to PDC and the Alimentary Pharmabiotic Centre under Grant Number SFI/12/RC/2273

    Study of a micro chamber quadrupole mass spectrometer

    Get PDF
    Copyright @ 2008 American Vacuum Society / American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Vacuum Science and Technology Part A: International Journal Devoted to Vacuum, Surfaces, and Films, 26(2), Article number 239 and may be found at http://scitation.aip.org/content/avs/journal/jvsta/26/2/10.1116/1.2827512.The design of a micro chamberquadrupolemass spectrometer (MCQMS) having a small total volume of only 20 cm3, including Faraday cup ion detector and ion source, is described. This MCQMS can resist a vacuum baking temperature of 400–500 °C. The quadrupole elements with a hyperbolic surface are made of a ceramic material and coated with a thin metal layer. The quadrupole mass filter has a field radius of 3 mm and a length of 100 mm. Prototypes of this new MCQMS can detect a minimum partial pressure of 10−8 Pa, have a peak width of ΔM=1 at 10% peak height from mass number 1 to 60, and show an excellent long-term stability. The new MCQMS is intended to be used in residual gas analyses of electron devices during a mutual pumping and baking process.National Key Basic Research Program, the Chinese 111 Project Grant and Program for New Century Excellent Talents in University

    A Constrained Approach to Multiscale Stochastic Simulation of\ud Chemically Reacting Systems

    Get PDF
    Stochastic simulation of coupled chemical reactions is often computationally intensive, especially if a chemical system contains reactions occurring on different time scales. In this paper we introduce a multiscale methodology suitable to address this problem. It is based on the Conditional Stochastic Simulation Algorithm (CSSA) which samples from the conditional distribution of the suitably defined fast variables, given values for the slow variables. In the Constrained Multiscale Algorithm (CMA) a single realization of the CSSA is then used for each value of the slow variable to approximate the effective drift and diffusion terms, in a similar manner to the constrained mean-force computations in other applications such as molecular dynamics. We then show how using the ensuing Stochastic Differential Equation (SDE) approximation, we can in turn approximate average switching times in stochastic chemical systems

    Fermented beverages with health-promoting potential: Past and future perspectives

    Get PDF
    peer-reviewedFermentation is an ancient form of food preservation, which also improves the nutritional content of foods. In many regions of the world, fermented beverages have become known for their health-promoting attributes. In addition to harnessing traditional beverages for commercial use, there have recently been innovative efforts to develop non-dairy probiotic fermented beverages from a variety of substrates, including soy milk, whey, cereals and vegetable and fruit juices. On the basis of recent developments, it is anticipated that fermented beverages will continue to be a significant component within the functional food market

    Antimicrobial antagonists against food pathogens; a bacteriocin perspective

    Get PDF
    peer-reviewedEfforts are continuing to find novel bacteriocins with enhanced specificity and potency. Traditional plating techniques are still being used for bacteriocin screening studies, however, the availability of ever more bacterial genome sequences and the use of in silico gene mining tools have revealed novel bacteriocin gene clusters that would otherwise have been overlooked. Furthermore, synthetic biology and bioengineering-based approaches are allowing scientists to harness existing and novel bacteriocin gene clusters through expression in different hosts and by enhancing functionalities. The same principles apply to bacteriocin producing probiotic cultures and their application to control pathogens in the gut. We can expect that the recent developments on bacteriocins from Lactic Acid Bacteria (LAB) described here will contribute greatly to increased commercialisation of bacteriocins in food systems.This work was funded by the Alimentary Pharmabiotic Centre, a research centre funded by Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan. The authors and their work were supported by SFI (grant no. 12/RC/2273

    In Vitro Activities of Nisin and Nisin Derivatives Alone and In Combination with Antibiotics against Staphylococcus Biofilms

    Get PDF
    peer-reviewedThe development and spread of pathogenic bacteria that are resistant to the existing catalog of antibiotics is a major public health threat. Biofilms are complex, sessile communities of bacteria embedded in an organic polymer matrix which serve to further enhance antimicrobial resistance. Consequently, novel compounds and innovative methods are urgently required to arrest the proliferation of drug-resistant infections in both nosocomial and community environments. Accordingly, it has been suggested that antimicrobial peptides could be used as novel natural inhibitors that can be used in formulations with synergistically acting antibiotics. Nisin is a member of the lantibiotic family of antimicrobial peptides that exhibit potent antibacterial activity against many Gram-positive bacteria. Recently we have used bioengineering strategies to enhance the activity of nisin against several high profile targets, including multi-drug resistant clinical pathogens such as methicillin-resistant Staphylococcus aureus, vancomycinresistant enterococci, staphylococci, and streptococci associated with bovine mastitis. We have also identified nisin derivatives with an enhanced ability to impair biofilm formation and to reduce the density of established biofilms of methicillin resistant S. pseudintermedius. The present study was aimed at evaluating the potential of nisin and nisin derivatives to increase the efficacy of conventional antibiotics and to assess the possibility of killing and/or eradicating biofilm-associated cells of a variety of staphylococcal targets. Growth curve-based comparisons established that combinations of derivatives nisin V C penicillin or nisin I4V C chloramphenicol had an enhanced inhibitory effect against S. aureus SA113 and S. pseudintermedius DSM21284, respectively, compared to the equivalent nisin A C antibiotic combinations or when each antimicrobial was administered alone. Furthermore, the metabolic activity of established biofilms treated with nisin V C chloramphenicol and nisin I4V C chloramphenicol combinations revealed a significant decrease in S. aureus SA113 and S. pseudintermedius DSM21284 biofilm viability, respectively, compared to the nisin A C antibiotic combinations as determined by the rapid colorimetric XTT assay. The results indicate that the activities of the nisin derivative and antibiotic combinations represent a significant improvement over that of the wild-type nisin and antibiotic combination and merit further investigation with a view to their use as anti-biofilm agents.DF,CH,PC,RR are supported by the Irish Government under the National Development Plan, through a Science Foundation Ireland (SFI)Technology and Innovation Development Award (TIDA14/TIDA/2286)to DF,a SFI Investigator awards to CH and RR(10/IN.1/B3027),SFI-PI funding(11/PI/1137)to PC and the Alimentary Pharmabiotic Centre under Grant Number SFI/12/RC/2273

    A degenerate PCR-based strategy as a means of identifying homologues of aminoglycoside and ß-lactam resistance genes in the gut microbiota

    Get PDF
    peer-reviewedBackground: The potential for the human gut microbiota to serve as a reservoir for antibiotic resistance genes has been the subject of recent discussion. However, this has yet to be investigated using a rapid PCR-based approach. In light of this, here we aim to determine if degenerate PCR primers can detect aminoglycoside and β-lactam resistance genes in the gut microbiota of healthy adults, without the need for an initial culture-based screen for resistant isolates. In doing so, we would determine if the gut microbiota of healthy adults, lacking recent antibiotic exposure, is a reservoir for resistance genes. Results: The strategy employed resulted in the identification of numerous aminoglycoside (acetylation, adenylation and phosphorylation) and β-lactam (including bla OXA, bla TEM, bla SHV and bla CTX-M) resistance gene homologues. On the basis of homology, it would appear that these genes originated from different bacterial taxa, with members of the Enterobacteriaceae being a particularly rich source. The results demonstrate that, even in the absence of recent antibiotic exposure, the human gut microbiota is a considerable reservoir for antibiotic resistance genes. Conclusions: This study has demonstrated that the gut can be a significant source of aminoglycoside and β-lactam resistance genes, even in the absence of recent antibiotic exposure. The results also demonstrate that PCR-based approaches can be successfully applied to detect antibiotic resistance genes in the human gut microbiota, without the need to isolate resistant strains. This approach could also be used to rapidly screen other complex environments for target genes.Fiona Fouhy is in receipt of an Irish Research Council EMBARK scholarship and is a Teagasc Walsh fellow. Research in the PDC laboratory is also supported by the Irish Government under the National Development Plan through the Science Foundation Ireland Investigator award 11/PI/113
    • …
    corecore