1,784 research outputs found

    Accuracy of the TRIA3 thick shell element

    Get PDF
    The accuracy of the new TRIA3 thick shell element is assessed via comparison with a theoretical solution for thick homogeneous and honeycomb flat simply supported plates under the action of a uniform pressure load. The theoretical thick plate solution is based on the theory developed by Reissner and includes the effects of transverse shear flexibility which are not included in the thin plate solutions based on Kirchoff plate theory. In addition, the TRIA3 is assessed using a set of finite element test problems developed by the MacNeal-Schwendler Corp. (MSC). Comparison of the COSMIC TRIA3 element as well as those from MSC and Universal Analytics Inc. (UAI) for these problems is presented. The current COSMIC TRIA3 element is shown to have excellent comparison with both the theoretical solutions and also those from the two commercial versions of NASTRAN with which it is compared

    A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    Get PDF
    NASAs Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair Lunar Lander and the Extravehicular Activities (EVA) advanced Lunar surface spacesuit. These customers require safe, reliable batteries with extremely high specific energy as compared to state-of-the-art. The specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery-level at 0 degrees Celsius ( C) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation between 0 and 30 C and 200 cycles are targeted. Electrode materials that were considered include layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. Advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide Li(LiNMC)O2 cathode with a silicon-based composite anode was selected as the technology that can potentially offer the best combination of safety, specific energy, energy density, and likelihood of success

    Pure Lovelock gravity and Chern-Simons theory

    Full text link
    We explore the possibility of finding Pure Lovelock gravity as a particular limit of a Chern-Simons action for a specific expansion of the AdS algebra in odd dimensions. We derive this relation at the level of the action in five and seven dimensions. Additionally we provide the general result for higher dimensions and discuss some issues arising from the obtained dynamics.Comment: 23 pages; V4: published versio

    Wrinkling of a bilayer membrane

    Get PDF
    The buckling of elastic bodies is a common phenomenon in the mechanics of solids. Wrinkling of membranes can often be interpreted as buckling under constraints that prohibit large amplitude deformation. We present a combination of analytic calculations, experiments, and simulations to understand wrinkling patterns generated in a bilayer membrane. The model membrane is composed of a flexible spherical shell that is under tension and that is circumscribed by a stiff, essentially incompressible strip with bending modulus B. When the tension is reduced sufficiently to a value \sigma, the strip forms wrinkles with a uniform wavelength found theoretically and experimentally to be \lambda = 2\pi(B/\sigma)^{1/3}. Defects in this pattern appear for rapid changes in tension. Comparison between experiment and simulation further shows that, with larger reduction of tension, a second generation of wrinkles with longer wavelength appears only when B is sufficiently small.Comment: 9 pages, 5 color figure

    3-point off-shell vertex in scalar QED in arbitrary gauge and dimension

    Full text link
    We calculate the complete one-loop off-shell three-point scalar-photon vertex in arbitrary gauge and dimension for Scalar Quantum Electrodynamics. Explicit results are presented for the particular cases of dimensions 3 and 4 both for massive and massless scalars. We then propose non-perturbative forms of this vertex that coincide with the perturbative answer to order e2e^2.Comment: Uses axodra

    Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair

    Get PDF
    Eukaryotic cells possess a universal repair machinery that ensures rapid resealing of plasma membrane disruptions. Before resealing, the torn membrane is submitted to considerable tension, which functions to expand the disruption. Here we show that annexin-A5 (AnxA5), a protein that self-assembles into two-dimensional (2D) arrays on membranes upon Ca2+ activation, promotes membrane repair. Compared with wild-type mouse perivascular cells, AnxA5-null cells exhibit a severe membrane repair defect. Membrane repair in AnxA5-null cells is rescued by addition of AnxA5, which binds exclusively to disrupted membrane areas. In contrast, an AnxA5 mutant that lacks the ability of forming 2D arrays is unable to promote membrane repair. We propose that AnxA5 participates in a previously unrecognized step of the membrane repair process: triggered by the local influx of Ca2+, AnxA5 proteins bind to torn membrane edges and form a 2D array, which prevents wound expansion and promotes membrane resealing
    corecore