7,620 research outputs found

    Absorption in dipole-lattice models of dielectrics

    Get PDF
    We develop a classical microscopic model of a dielectric. The model features nonlinear interaction terms between polarizable dipoles and lattice vibrations. The lattice vibrations are found to act as a pseudo-reservoir, giving broadband absorption of electromagnetic radiation without the addition of damping terms in the dynamics. The effective permittivity is calculated using a perturbative iteration method and is found to have the form associated with real dielectrics. Spatial dispersion is naturally included in the model and we also calculate the wavevector dependence of the permittivity.Comment: 13 pages, 9 figures; references added to section

    Healing skills from the underserved patient perspective

    Get PDF

    Puncture discharges in surface dielectrics as contaminant sources in spacecraft environments

    Get PDF
    Spacecraft in geosynchronous orbits are known to become charged to large negative potentials during the local midnight region of the satellite orbit. Such discharges have been studied by the electron beam irradiation of dielectric samples in a vacuum environment. In addition to static measurements and photographic examination of the puncture discharges in Teflon samples, the transient characteristics of the electrical discharges are determined from oscillographs of voltage and current and by charged particle measurements employing a biased Faraday cup and a retarding potential analyzer. Using these latter techniques, studies of angular and energy distributions of charged particles have indicated an initial burst of high energy electrons (5 x 10 to the 13th power per discharge at energies greater than 300 eV) followed by a less intense burst of lower energy negative particles. Positive ions are emitted from the discharge site in an initial high velocity burst followed by a lower velocity burst tentatively identified as carbon

    Optimal traps in graphene

    Get PDF
    We transform the two-dimensional Dirac-Weyl equation, which governs the charge carriers in graphene, into a non-linear first-order differential equation for scattering phase shift, using the so-called variable phase method. This allows us to utilize the Levinson Theorem to find zero-energy bound states created electrostatically in realistic structures. These confined states are formed at critical potential strengths, which leads to us posit the use of `optimal traps' to combat the chiral tunneling found in graphene, which could be explored experimentally with an artificial network of point charges held above the graphene layer. We also discuss scattering on these states and find the zero angular momentum states create a dominant peak in scattering cross-section as energy tends towards the Dirac point energy, suggesting a dominant contribution to resistivity.Comment: 11 pages, 5 figure

    Commentary by: L.R. Churchill

    Get PDF
    corecore