21 research outputs found

    MDM2 Promoter SNP344T>A (rs1196333) Status Does Not Affect Cancer Risk

    Get PDF
    The MDM2 proto-oncogene plays a key role in central cellular processes like growth control and apoptosis, and the gene locus is frequently amplified in sarcomas. Two polymorphisms located in the MDM2 promoter P2 have been shown to affect cancer risk. One of these polymorphisms (SNP309T>G; rs2279744) facilitates Sp1 transcription factor binding to the promoter and is associated with increased cancer risk. In contrast, SNP285G>C (rs117039649), located 24 bp upstream of rs2279744, and in complete linkage disequilibrium with the SNP309G allele, reduces Sp1 recruitment and lowers cancer risk. Thus, fine tuning of MDM2 expression has proven to be of significant importance with respect to tumorigenesis. We assessed the potential functional effects of a third MDM2 promoter P2 polymorphism (SNP344T>A; rs1196333) located on the SNP309T allele. While in silico analyses indicated SNP344A to modulate TFAP2A, SPIB and AP1 transcription factor binding, we found no effect of SNP344 status on MDM2 expression levels. Assessing the frequency of SNP344A in healthy Caucasians (n = 2,954) and patients suffering from ovarian (n = 1,927), breast (n = 1,271), endometrial (n = 895) or prostatic cancer (n = 641), we detected no significant difference in the distribution of this polymorphism between any of these cancer forms and healthy controls (6.1% in healthy controls, and 4.9%, 5.0%, 5.4% and 7.2% in the cancer groups, respectively). In conclusion, our findings provide no evidence indicating that SNP344A may affect MDM2 transcription or cancer risk

    Prognostic value of metabolic response in breast cancer patients receiving neoadjuvant chemotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Today's clinical diagnostic tools are insufficient for giving accurate prognosis to breast cancer patients. The aim of our study was to examine the tumor metabolic changes in patients with locally advanced breast cancer caused by neoadjuvant chemotherapy (NAC), relating these changes to clinical treatment response and long-term survival.</p> <p>Methods</p> <p>Patients (n = 89) participating in a randomized open-label multicenter study were allocated to receive either NAC as epirubicin or paclitaxel monotherapy. Biopsies were excised pre- and post-treatment, and analyzed by high resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS). The metabolite profiles were examined by paired and unpaired multivariate methods and findings of important metabolites were confirmed by spectral integration of the metabolite peaks.</p> <p>Results</p> <p>All patients had a significant metabolic response to NAC, and pre- and post-treatment spectra could be discriminated with 87.9%/68.9% classification accuracy by paired/unpaired partial least squares discriminant analysis (PLS-DA) (<it>p </it>< 0.001). Similar metabolic responses were observed for the two chemotherapeutic agents. The metabolic responses were related to patient outcome. Non-survivors (< 5 years) had increased tumor levels of lactate (<it>p </it>= 0.004) after treatment, while survivors (≥ 5 years) experienced a decrease in the levels of glycine (<it>p </it>= 0.047) and choline-containing compounds (<it>p </it>≤ 0.013) and an increase in glucose (<it>p </it>= 0.002) levels. The metabolic responses were not related to clinical treatment response.</p> <p>Conclusions</p> <p>The differences in tumor metabolic response to NAC were associated with breast cancer survival, but not to clinical response. Monitoring metabolic responses to NAC by HR MAS MRS may provide information about tumor biology related to individual prognosis.</p

    Breast tumors from CHEK2 1100delC-mutation carriers: genomic landscape and clinical implications

    Get PDF
    Introduction: Checkpoint kinase 2 (CHEK2) is a moderate penetrance breast cancer risk gene, whose truncating mutation 1100delC increases the risk about twofold. We investigated gene copy-number aberrations and gene-expression profiles that are typical for breast tumors of CHEK2 1100delC-mutation carriers. Methods: In total, 126 breast tumor tissue specimens including 32 samples from patients carrying CHEK2 1100delC were studied in array-comparative genomic hybridization (aCGH) and gene-expression (GEX) experiments. After dimensionality reduction with CGHregions R package, CHEK2 1100delC-associated regions in the aCGH data were detected by the Wilcoxon rank-sum test. The linear model was fitted to GEX data with R package limma. Genes whose expression levels were associated with CHEK2 1100delC mutation were detected by the bayesian method. Results: We discovered four lost and three gained CHEK2 1100delC-related loci. These include losses of 1p13.3-31.3, 8p21.1-2, 8p23.1-2, and 17p12-13.1 as well as gains of 12q13.11-3, 16p13.3, and 19p13.3. Twenty-eight genes located on these regions showed differential expression between CHEK2 1100delC and other tumors, nominating them as candidates for CHEK2 1100delC-associated tumor-progression drivers. These included CLCA1 on 1p22 as well as CALCOCO1, SBEM, and LRP1 on 12q13. Altogether, 188 genes were differentially expressed between CHEK2 1100delC and other tumors. Of these, 144 had elevated and 44, reduced expression levels. Our results suggest the WNT pathway as a driver of tumorigenesis in breast tumors of CHEK2 1100delC-mutation carriers and a role for the olfactory receptor protein family in cancer progression. Differences in the expression of the 188 CHEK2 1100delC-associated genes divided breast tumor samples from three independent datasets into two groups that differed in their relapse-free survival time. Conclusions: We have shown that copy-number aberrations of certain genomic regions are associated with CHEK2 mutation 1100delC. On these regions, we identified potential drivers of CHEK2 1100delC-associated tumorigenesis, whose role in cancer progression is worth investigating. Furthermore, poorer survival related to the CHEK2 1100delC gene-expression signature highlights pathways that are likely to have a role in the development of metastatic disease in carriers of the CHEK2 1100delC mutation

    Effect of WBC BRCA1

    No full text
    corecore