19 research outputs found

    IMPROVED PROCESS FOR THE PREPARATION OF 4-((4-METHYLPIPERAZIN-1-YL)METHYL)-3-(TRIFLUOROMETHYL)ANILINE

    Get PDF
    IMPROVED PROCESS FOR THE PREPARATION OF 4-((4-METHYLPIPERAZIN-1-YL)METHYL)-3-(TRIFLUOROMETHYL)ANILINE The present invention relates to an improved process for the preparation of 4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)aniline formula (1). Formula (1) 4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)aniline is used in the preparation of Ponatinib hydrochloride

    IMPROVED PROCESS FOR THE PREPARATION OF LURBINECTEDIN

    Get PDF
    The present disclosure relates to an improved process for the preparation of Lurbinectedin of formula-1which is structurally shown as below: Formula-

    Rotational micro-CT using a clinical C-arm angiography gantry

    No full text
    Rotational angiography (RA) gantries are used routinely to acquire sequences of projection images of patients from which 3D renderings of vascular structures are generated using Feldkamp cone-beam reconstruction algorithms. However, these systems have limited resolution (<4 lp∕mm). Micro-computed tomography (micro-CT) systems have better resolution (>10 lp∕mm) but to date have relied either on rotating object imaging or small bore geometry for small animal imaging, and thus are not used for clinical imaging. The authors report here the development and use of a 3D rotational micro-angiography (RMA) system created by mounting a micro-angiographic fluoroscope (MAF) [35 μm pixel, resolution >10 lp∕mm, field of view (FOV)=3.6 cm] on a standard clinical FPD-based RA gantry (Infinix, Model RTP12303J-G9E, Toshiba Medical Systems Corp., Tustin, CA). RA image sequences are obtained using the MAF and reconstructed. To eliminate artifacts due to image truncation, lower-dose (compared to MAF acquisition) full-FOV (FFOV) FPD RA sequences (194 μm pixel, FOV=20 cm) were also obtained to complete the missing data. The RA gantry was calibrated using a helical bead phantom. To ensure high-quality high-resolution reconstruction, the high-resolution images from the MAF were aligned spatially with the lower-dose FPD images, and the pixel values in the FPD image data were scaled to match those of the MAF. Images of a rabbit with a coronary stent placed in an artery in the Circle of Willis were obtained and reconstructed. The MAF images appear well aligned with the FPD images (average correlation coefficient before and after alignment: 0.65 and 0.97, respectively) Greater details without any visible truncation artifacts are seen in 3D RMA (MAF-FPD) images than in those of the FPD alone. The FWHM of line profiles of stent struts (100 μm diameter) are approximately 192±21 and 313±38 μm for the 3D RMA and FPD data, respectively. In addition, for the dual-acquisition 3D RMA, FFOV FPD data need not be of the highest quality, and thus may be acquired at lower dose compared to a standard FPD acquisition. These results indicate that this system could provide the basis for high resolution images of regions of interest in patients with a reduction in the integral dose compared to the standard FPD approach

    Self-calibration of a cone-beam micro-CT system

    No full text
    Use of cone-beam computed tomography (CBCT) is becoming more frequent. For proper reconstruction, the geometry of the CBCT systems must be known. While the system can be designed to reduce errors in the geometry, calibration measurements must still be performed and corrections applied. Investigators have proposed techniques using calibration objects for system calibration. In this study, the authors present methods to calibrate a rotary-stage CB micro-CT (CBμCT) system using only the images acquired of the object to be reconstructed, i.e., without the use of calibration objects. Projection images are acquired using a CBμCT system constructed in the authors’ laboratories. Dark- and flat-field corrections are performed. Exposure variations are detected and quantified using analysis of image regions with an unobstructed view of the x-ray source. Translations that occur during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The axis of rotation is determined using registration of antiposed projection images. These techniques were evaluated using data obtained with calibration objects and phantoms. The physical geometric axis of rotation is determined and aligned with the rotational axis (assumed to be the center of the detector plane) used in the reconstruction process. The parameters describing this axis agree to within 0.1 mm and 0.3 deg with those determined using other techniques. Blurring due to residual calibration errors has a point-spread function in the reconstructed planes with a full-width-at-half-maximum of less than 125 μm in a tangential direction and essentially zero in the radial direction for the rotating object. The authors have used this approach on over 100 acquisitions over the past 2 years and have regularly obtained high-quality reconstructions, i.e., without artifacts and no detectable blurring of the reconstructed objects. This self-calibrating approach not only obviates calibration runs, but it also provides quality control data for each data set

    Multi-institutional feasibility study of a fast patient localization method in total marrow irradiation with helical tomotherapy: A global health initiative by the international consortium of total marrow irradiation

    No full text
    Purpose: To develop, characterize, and implement a fast patient localization method for total marrow irradiation. Methods and Materials: Topographic images were acquired using megavoltage computed tomography (MVCT) detector data by delivering static orthogonal beams while the couch traversed through the gantry. Geometric and detector response corrections were performed to generate a megavoltage topogram (MVtopo). We also generated kilovoltage topograms (kVtopo) from the projection data of 3-dimensional CT images to reproduce the same geometry as helical tomotherapy. The MVtopo imaging dose and the optimal image acquisition parameters were investigated. A multi-institutional phantom study was performed to verify the image registration uncertainty. Forty-five MVtopo images were acquired and analyzed with in-house image registration software. Results: The smallest jaw size (front and backup jaws of 0) provided the best image contrast and longitudinal resolution. Couch velocity did not affect the image quality or geometric accuracy. The MVtopo dose was less than the MVCT dose. The image registration uncertainty from the multi-institutional study was within 2.8 mm. In patient localization, the differences in calculated couch shift between the registration with MVtopo-kVtopo and MVCT-kVCT images in lateral, cranial - caudal, and vertical directions were 2.2 \ub1 1.7 mm, 2.6 \ub1 1.4 mm, and 2.7 \ub1 1.1 mm, respectively. The imaging time in MVtopo acquisition at the couch speed of 3 cm/s was &lt;1 minute, compared with 6515 minutes in MVCT for all patients. Conclusion: Whole-body MVtopo imaging could be an effective alternative to time-consuming MVCT for total marrow irradiation patient localization

    Cone-Beam Micro-CT System Based on LabVIEW Software

    No full text
    Construction of a cone-beam computed tomography (CBCT) system for laboratory research usually requires integration of different software and hardware components. As a result, building and operating such a complex system require the expertise of researchers with significantly different backgrounds. Additionally, writing flexible code to control the hardware components of a CBCT system combined with designing a friendly graphical user interface (GUI) can be cumbersome and time consuming. An intuitive and flexible program structure, as well as the program GUI for CBCT acquisition, is presented in this note. The program was developed in National Instrument’s Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) graphical language and is designed to control a custom-built CBCT system but has been also used in a standard angiographic suite. The hardware components are commercially available to researchers and are in general provided with software drivers which are LabVIEW compatible. The program structure was designed as a sequential chain. Each step in the chain takes care of one or two hardware commands at a time; the execution of the sequence can be modified according to the CBCT system design. We have scanned and reconstructed over 200 specimens using this interface and present three examples which cover different areas of interest encountered in laboratory research. The resulting 3D data are rendered using a commercial workstation. The program described in this paper is available for use or improvement by other researchers
    corecore