661 research outputs found
Small-worlds: How and why
We investigate small-world networks from the point of view of their origin.
While the characteristics of small-world networks are now fairly well
understood, there is as yet no work on what drives the emergence of such a
network architecture. In situations such as neural or transportation networks,
where a physical distance between the nodes of the network exists, we study
whether the small-world topology arises as a consequence of a tradeoff between
maximal connectivity and minimal wiring. Using simulated annealing, we study
the properties of a randomly rewired network as the relative tradeoff between
wiring and connectivity is varied. When the network seeks to minimize wiring, a
regular graph results. At the other extreme, when connectivity is maximized, a
near random network is obtained. In the intermediate regime, a small-world
network is formed. However, unlike the model of Watts and Strogatz (Nature {\bf
393}, 440 (1998)), we find an alternate route to small-world behaviour through
the formation of hubs, small clusters where one vertex is connected to a large
number of neighbours.Comment: 20 pages, latex, 9 figure
In Defence of Modest Doxasticism About Delusions
Here I reply to the main points raised by the commentators on the arguments put forward in my Delusions and Other Irrational Beliefs (OUP, 2009). My response is aimed at defending a modest doxastic account of clinical delusions, and is articulated in three sections. First, I consider the view that delusions are in-between perceptual and doxastic states, defended by Jacob Hohwy and Vivek Rajan, and the view that delusions are failed attempts at believing or not-quite-beliefs, proposed by Eric Schwitzgebel and Maura Tumulty. Then, I address the relationship between the doxastic account of delusions and the role, nature, and prospects of folk psychology, which is discussed by Dominic Murphy, Keith Frankish, and Maura Tumulty in their contributions. In the final remarks, I turn to the continuity thesis and suggest that, although there are important differences between clinical delusions and non-pathological beliefs, these differences cannot be characterised satisfactorily in epistemic terms. \u
Comparative Study of foF2 Measurements with IRI-2007 Model Predictions During Extended Solar Minimum
The unusually deep and extended solar minimum of cycle 2324 made it very difficult to predict the solar indices 1 or 2 years into the future. Most of the predictions were proven wrong by the actual observed indices. IRI gets its solar, magnetic, and ionospheric indices from an indices file that is updated twice a year. In recent years, due to the unusual solar minimum, predictions had to be corrected downward with every new indices update. In this paper we analyse how much the uncertainties in the predictability of solar activity indices affect the IRI outcome and how the IRI values calculated with predicted and observed indices compared to the actual measurements.Monthly median values of F2 layer critical frequency (foF2) derived from the ionosonde measurements at the mid-latitude ionospheric station Juliusruh were compared with the International Reference Ionosphere (IRI-2007) model predictions. The analysis found that IRIprovides reliable results that compare well with actual measurements, when the definite (observed and adjusted) indices of solar activityare used, while IRI values based on earlier predictions of these indices noticeably overestimated the measurements during the solar minimum.One of the principal objectives of this paper is to direct attention of IRI users to update their solar activity indices files regularly.Use of an older index file can lead to serious IRI overestimations of F-region electron density during the recent extended solar minimum
Concept of a continuous fermentation of a mash in the production of ethanol from starch-containing raw materials
The concept of a continuous fermentation of a mashin the bioreactor equipped with the microfiltrational module, ensuring separation of brew with filtrate takeoff (an aqueous-alcoholic solute) and backstock of a concentrate of yeast to the barmy device is offered. Efficiency of functioning of preproduction models of the microfiltrational elements designed of pressed titan powder with the average pore size from 2 tо7 micron is introduced. Throughput of filter cartridges on an aqueous-alcoholic solute on modelling system is experimentally defined and was 700–1.000 dm 3 /m 2 · hour at absolute efficiencyof keeping of yeast cells
Experimental modulation of capsule size in Cryptococcus neoformans
Experimental modulation of capsule size is an important technique for the study of the virulence of the encapsulated pathogen Cryptococcus neoformans. In this paper, we summarize the techniques available for experimental modulation of capsule size in this yeast and describe improved methods to induce capsule size changes. The response of the yeast to the various stimuli is highly dependent on the cryptococcal strain. A high CO(2) atmosphere and a low iron concentration have been used classically to increase capsule size. Unfortunately, these stimuli are not reliable for inducing capsular enlargement in all strains. Recently we have identified new and simpler conditions for inducing capsule enlargement that consistently elicited this effect. Specifically, we noted that mammalian serum or diluted Sabouraud broth in MOPS buffer pH 7.3 efficiently induced capsule growth. Media that slowed the growth rate of the yeast correlated with an increase in capsule size. Finally, we summarize the most commonly used media that induce capsule growth in C. neoformans
Mesoscopic organization reveals the constraints governing C. elegans nervous system
One of the biggest challenges in biology is to understand how activity at the
cellular level of neurons, as a result of their mutual interactions, leads to
the observed behavior of an organism responding to a variety of environmental
stimuli. Investigating the intermediate or mesoscopic level of organization in
the nervous system is a vital step towards understanding how the integration of
micro-level dynamics results in macro-level functioning. In this paper, we have
considered the somatic nervous system of the nematode Caenorhabditis elegans,
for which the entire neuronal connectivity diagram is known. We focus on the
organization of the system into modules, i.e., neuronal groups having
relatively higher connection density compared to that of the overall network.
We show that this mesoscopic feature cannot be explained exclusively in terms
of considerations, such as optimizing for resource constraints (viz., total
wiring cost) and communication efficiency (i.e., network path length).
Comparison with other complex networks designed for efficient transport (of
signals or resources) implies that neuronal networks form a distinct class.
This suggests that the principal function of the network, viz., processing of
sensory information resulting in appropriate motor response, may be playing a
vital role in determining the connection topology. Using modular spectral
analysis, we make explicit the intimate relation between function and structure
in the nervous system. This is further brought out by identifying functionally
critical neurons purely on the basis of patterns of intra- and inter-modular
connections. Our study reveals how the design of the nervous system reflects
several constraints, including its key functional role as a processor of
information.Comment: Published version, Minor modifications, 16 pages, 9 figure
Research of Quantum Well Laser Diode’s and Heterostructural P-I-N Photodiode’s of Fiber-Optic Modules Radiation Hardness to Gamma-ray and Neutron Irradiation
The paper presents the measurements results of optical and electrical parameters of quantum well laser diodes and heteroepitaxial photodiodes under gamma-ray and neutron irradiation. The testing results of transceiver modules gamma irradiation tolerance are introduced. The most vulnerable elements of module are highlighted.
Keywords: laser diode, photodiode, radiation hardness, VCSEL, transceiver modules, fiber-optic communicatio
Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?
Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure
Geometry of River Networks I: Scaling, Fluctuations, and Deviations
This article is the first in a series of three papers investigating the
detailed geometry of river networks. Large-scale river networks mark an
important class of two-dimensional branching networks, being not only of
intrinsic interest but also a pervasive natural phenomenon. In the description
of river network structure, scaling laws are uniformly observed. Reported
values of scaling exponents vary suggesting that no unique set of scaling
exponents exists. To improve this current understanding of scaling in river
networks and to provide a fuller description of branching network structure, we
report here a theoretical and empirical study of fluctuations about and
deviations from scaling. We examine data for continent-scale river networks
such as the Mississippi and the Amazon and draw inspiration from a simple model
of directed, random networks. We center our investigations on the scaling of
the length of sub-basin's dominant stream with its area, a characterization of
basin shape known as Hack's law. We generalize this relationship to a joint
probability density and show that fluctuations about scaling are substantial.
We find strong deviations from scaling at small scales which can be explained
by the existence of linear network structure. At intermediate scales, we find
slow drifts in exponent values indicating that scaling is only approximately
obeyed and that universality remains indeterminate. At large scales, we observe
a breakdown in scaling due to decreasing sample space and correlations with
overall basin shape. The extent of approximate scaling is significantly
restricted by these deviations and will not be improved by increases in network
resolution.Comment: 16 pages, 13 figures, Revtex4, submitted to PR
Study of Gamma-ray Induced Attenuation of Fluorine-doped Single-mode Radiation Hard Optic Fiber
The paper presents the measurements results of optic fiber’s radiation induced attenuation. The approach of optic fiber’s radiation test at negative temperatures is introduced. The results of an investigation of the decay of an optical signal during a pulsed electron.
Keywords: radiation hardness, fiber-optic communication, radiation-induced attenuatio
- …
