462 research outputs found

    Descartes, corpuscles and reductionism : mechanism and systems in Descartes' physiology

    Get PDF
    I argue that Descartes explains physiology in terms of whole systems, and not in terms of the size, shape and motion of tiny corpuscles (corpuscular mechanics). It is a standard, entrenched view that Descartes’s proper means of explanation in the natural world is through strict reduction to corpuscular mechanics. This view is bolstered by a handful of corpuscular-mechanical explanations in Descartes’s physics, which have been taken to be representative of his treatment of all natural phenomena. However, Descartes’s explanations of the ‘principal parts’ of physiology do not follow the corpuscular–mechanical pattern. Des Chene (2001) has identified systems in Descartes’s account of physiology, but takes them ultimately to reduce down to the corpuscle level. I argue that they do not. Rather, Descartes maintains entire systems, with components selected from multiple levels of organisation, in order to construct more complete explanations than corpuscular mechanics alone would allow

    Open cluster candidates in the VVVX area: VVVX CL 076 and CL 077

    Get PDF
    We are reporting some basic parameters of two newly discovered clusters, VVVX CL 076 and CL 077, recently discovered in the galactic disk area covered by the VISTA Variables in the Via Lactea eXtended (VVVX) ESO Public Survey. The preliminary analysis shows that both clusters are young and relatively close to the Sun.Peer reviewedFinal Published versio

    Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein kinase CK2 is a pleiotropic serine/threonine protein kinase with hundreds of reported substrates, and plays an important role in a number of cellular processes. The cellular functions of <it>Plasmodium falciparum </it>CK2 (PfCK2) are unknown. The parasite's genome encodes one catalytic subunit, PfCK2α, which we have previously shown to be essential for completion of the asexual erythrocytic cycle, and two putative regulatory subunits, PfCK2β1 and PfCK2β2.</p> <p>Results</p> <p>We now show that the genes encoding both regulatory PfCK2 subunits (PfCK2β1 and PfCK2β2) cannot be disrupted. Using immunofluorescence and electron microscopy, we examined the intra-erythrocytic stages of transgenic parasite lines expressing hemagglutinin (HA)-tagged catalytic and regulatory subunits (HA-CK2α, HA-PfCK2β1 or HA-PfCK2β2), and localized all three subunits to both cytoplasmic and nuclear compartments of the parasite. The same transgenic parasite lines were used to purify PfCK2β1- and PfCK2β2-containing complexes, which were analyzed by mass spectrometry. The recovered proteins were unevenly distributed between various pathways, with a large proportion of components of the chromatin assembly pathway being present in both PfCK2β1 and PfCK2β2 precipitates, implicating PfCK2 in chromatin dynamics. We also found that chromatin-related substrates such as nucleosome assembly proteins (Naps), histones, and two members of the Alba family are phosphorylated by PfCK2α <it>in vitro</it>.</p> <p>Conclusions</p> <p>Our reverse-genetics data show that each of the two regulatory PfCK2 subunits is required for completion of the asexual erythrocytic cycle. Our interactome study points to an implication of PfCK2 in many cellular pathways, with chromatin dynamics being identified as a major process regulated by PfCK2. This study paves the way for a kinome-wide interactomics-based approach to elucidate protein kinase function in malaria parasites.</p

    Modeling Variable Linear Polarization Produced by Co-Rotating Interaction Regions (CIRs) Across Optical Recombination Lines of Wolf-Rayet Stars

    Full text link
    Massive star winds are structured both stochastically ("clumps") and often coherently (Co-rotation Interaction Regions, or CIRs). Evidence for CIRs threading the winds of Wolf-Rayet (WR) stars arises from multiple diagnostics including linear polarimetry. Some observations indicate changes in polarization position angle across optical recombination emission lines from a WR star wind but limited to blueshifted Doppler velocities. We explore a model involving a spherical wind with a single conical CIR stemming from a rotating star as qualitative proof-of-concept. To obtain a realistic distribution of limb polarization and limb darkening across the pseudo-photosphere formed in the optically thick wind of a WR star, we used Monte Carlo radiative transfer (MCRT). Results are shown for a parameter study. For line properties similar to WR 6 (EZ CMa; HD 50896), the combination of the MCRT results, a simple model for the CIR, and the Sobolev approximation for the line formation, we were able to reproduce variations in both polarization amplitude and position angle commensurate with observations. Characterizing CIRs in WR~winds has added importance for providing stellar rotation periods since the v sin i values are unobtainable because the pseudo-photosphere forms in the wind itself.Comment: This is a pre-copyedited, author-produced PDF of an article accepted for publication in MNRAS following peer revie

    Premenopausal endogenous oestrogen levels and breast cancer risk: a meta-analysis.

    Get PDF
    BACKGROUND: Many of the established risk factors for breast cancer implicate circulating hormone levels in the aetiology of the disease. Increased levels of postmenopausal endogenous oestradiol (E2) have been found to increase the risk of breast cancer, but no such association has been confirmed in premenopausal women. We carried out a meta-analysis to summarise the available evidence in women before the menopause. METHODS: We identified seven prospective studies of premenopausal endogenous E2 and breast cancer risk, including 693 breast cancer cases. From each study we extracted odds ratios of breast cancer between quantiles of endogenous E2, or for unit or s.d. increases in (log transformed) E2, or (where odds ratios were unavailable) summary statistics for the distributions of E2 in breast cancer cases and unaffected controls. Estimates for a doubling of endogenous E2 were obtained from these extracted estimates, and random-effect meta-analysis was used to obtain a pooled estimate across the studies. RESULTS: Overall, we found weak evidence of a positive association between circulating E2 levels and the risk of breast cancer, with a doubling of E2 associated with an odds ratio of 1.10 (95% CI: 0.96, 1.27). CONCLUSION: Our findings are consistent with the hypothesis of a positive association between premenopausal endogenous E2 and breast cancer risk

    Metallicity variations in the Type II globular cluster NGC6934

    Full text link
    The Hubble Space Telescope photometric survey of Galactic globular clusters (GCs) has revealed a peculiar "chromosome map" for NGC6934. Besides a typical sequence, similar to that observed in Type I GCs, NGC 6934 displays additional stars on the red side, analogous to the anomalous, Type II GCs, as defined in our previous work. We present a chemical abundance analysis of four red giants in this GC. Two stars are located on the chromosome map sequence common to all GCs, and another two on the additional sequence. We find: (i) star-to-star Fe variations, with the two anomalous stars being enriched by ~0.2 dex. Due to our small-size sample, this difference is at the ~2.5 sigma level; (ii) no evidence for variations in the slow neutron-capture abundances over Fe, at odds with what is often observed in anomalous Type II GCs, e.g. M 22 and Omega Centauri; (iii) no large variations in light elements C, O and Na, compatible with the targets location on the lower part of the chromosome map where such variations are not expected. Since the analyzed stars are homogeneous in light elements, the only way to reproduce the photometric splits on the sub-giant (SGB) and the red-giant (RGB) branches is to assume that red-RGB/faint-SGB stars are enhanced in [Fe/H] by ~0.2. This fact corroborates the spectroscopic evidence of a metallicity variation in NGC6934. The observed chemical pattern resembles only partially the other Type II GCs, suggesting that NGC6934 might belong either to a third class of GCs, or be a link between normal Type I and anomalous Type II GCs.Comment: 26 pages, 9 figures, accepted for publication in Ap

    Infrared photometry and CaT spectroscopy of globular cluster M 28 (NGC 6626)

    Full text link
    Recent studies show that the inner Galactic regions host genuine bulge globular clusters, but also halo intruders, complex remnants of primordial building blocks, and objects likely accreted during major merging events. In this study we focus on the properties of M 28, a very old and massive cluster currently located in the Galactic bulge. We analysed wide-field infrared photometry collected by the VVV survey, VVV proper motions, and intermediate-resolution spectra in the calcium triplet range for 113 targets in the cluster area. Our results in general confirm previous estimates of the cluster properties available in the literature. We find no evidence of differences in metallicity between cluster stars, setting an upper limit of Delta[Fe/H]<0.08 dex to any internal inhomogeneity. We confirm that M 28 is one of the oldest objects in the Galactic bulge (13-14 Gyr). From this result and the literature data, we find evidence of a weak age-metallicity relation among bulge globular clusters that suggests formation and chemical enrichment. In addition, wide-field density maps show that M 28 is tidally stressed and that it is losing mass into the general bulge field. Our study indicates that M 28 is a genuine bulge globular cluster, but its very old age and its mass loss suggest that this cluster could be the remnant of a larger structure, possibly a primeval bulge building block.Comment: Accepted for publication in Astronomy & Astrophysic
    corecore