8,475 research outputs found

    Gain, phase and frequency stability of DSS-42 and DSS-43 vor Voyage Uranus encounter

    Get PDF
    Theoretically rigorous definitions are derived of such parameters as RF signal path length, phase delay, and phase/frequency stability in a Cassegrainian antenna applicable to a narrow bandwidth channel, as well as algorithms for evaluating these parameters. This work was performed in support of the Voyager spacecraft encounter with Uranus in January 1986. The information was needed to provide Voyager/Uranus radio science researchers with a rotational basis for deciding the best strategy to operate the three antennas involved during the crucial 5-hour occultation period of the encounter. Such recommendations are made at the end of the article

    Rapid microwave-assisted CNBr cleavage of bead-bound peptides

    Get PDF
    Large libraries of peptides, cyclic peptides, and other molecules are standard tools for the discovery of drugs, molecular probes, and affinity reagents. In particular, one-bead-one-compound (OBOC) libraries,(1) prepared by the split-and-mix method,(2) provide access to a broad chemical space with a minimum of reagents. Once such a library has been screened against the target of interest, the chemical identity of the library elements on the hit beads is identified. For peptide libraries and their variants, mass spectrometry (MS) based peptide sequencing provides the most rapid method for such analysis. OBOC libraries are constructed in a number of ways to facilitate MS analysis,(3-5) but one common feature is that the peptide must be cleaved from the bead prior to being introduced into the mass spectrometer. While a number of chemical(6) and photochemical(7) cleavage strategies have been developed, the most common strategy is to incorporate a CNBr-cleavable methionine-linker group at the C-terminus of the peptide.(8) CNBr cleavage has also been widely used in proteomics to cleave proteins.(9) With such chemistry, up to 100 beads from an OBOC peptide library can be sequenced in a 24 h period.(10) A large fraction of that time, however, is devoted to the CNBr cleavage step. Standard literature protocols describe CNBr cleavage as requiring between 12 and 24 h, using 20−30 μL of 0.25 M CNBr in 70% aqueous formic acid at room temperature.(11) Although the CNBr cleavage time may be reduced to 2−4 h at elevated temperatures (47 °C), significant side-products may be generated.(12) All reports that we have found that describe CNBr cleavage chemistry from single beads have used the same conditions as for proteomics, although the two chemical processes are not necessarily equivalent

    The Distance to the Vela Supernova Remnant

    Get PDF
    We have obtained high resolution Ca II and Na I absorption line spectra toward 68 OB stars in the direction of the Vela Supernova Remnant. The stars lie at distances of 190 -- 2800 pc as determined by Hipparcos and spectroscopic parallax estimations. The presence of high velocity absorption attributable to the remnant along some of the sight lines constrains the remnant distance to 250+/-30 pc. This distance is consistent with several recent investigations that suggest that the canonical remnant distance of 500 pc is too large.Comment: To be published in The Astrophysical Journal Letters Figure 1 y-axis labels correcte

    Third-order optical autocorrelator for time-domain operation at telecommunication wavelengths

    Get PDF
    We report on amorphous organic thin films that exhibit efficient third-harmonic generation at telecommunication wavelengths. At 1550 nm, micrometer-thick samples generate up to 17 µW of green light with input power of 250 mW delivered by an optical parametric oscillator. This high conversion efficiency is achieved without phase matching or cascading of quadratic nonlinear effects. With these films, we demonstrate a low-cost, sensitive third-order autocorrelator that can be used in the time-frequency domain

    Learning a Static Analyzer from Data

    Full text link
    To be practically useful, modern static analyzers must precisely model the effect of both, statements in the programming language as well as frameworks used by the program under analysis. While important, manually addressing these challenges is difficult for at least two reasons: (i) the effects on the overall analysis can be non-trivial, and (ii) as the size and complexity of modern libraries increase, so is the number of cases the analysis must handle. In this paper we present a new, automated approach for creating static analyzers: instead of manually providing the various inference rules of the analyzer, the key idea is to learn these rules from a dataset of programs. Our method consists of two ingredients: (i) a synthesis algorithm capable of learning a candidate analyzer from a given dataset, and (ii) a counter-example guided learning procedure which generates new programs beyond those in the initial dataset, critical for discovering corner cases and ensuring the learned analysis generalizes to unseen programs. We implemented and instantiated our approach to the task of learning JavaScript static analysis rules for a subset of points-to analysis and for allocation sites analysis. These are challenging yet important problems that have received significant research attention. We show that our approach is effective: our system automatically discovered practical and useful inference rules for many cases that are tricky to manually identify and are missed by state-of-the-art, manually tuned analyzers

    Hydrodynamic simulations with the Godunov SPH

    Full text link
    We present results based on an implementation of the Godunov Smoothed Particle Hydrodynamics (GSPH), originally developed by Inutsuka (2002), in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equations of moment and energy conservation, starting from the convolution of these equations with the interpolating kernel. The two most important aspects of the numerical implementation of these equations are (a) the appearance of fluid velocity and pressure obtained from the solution of the Riemann problem between each pair of particles, and (b the absence of an artificial viscosity term. We carry out three different controlled hydrodynamical three-dimensional tests, namely the Sod shock tube, the development of Kelvin-Helmholtz instabilities in a shear flow test, and the "blob" test describing the evolution of a cold cloud moving against a hot wind. The results of our tests confirm and extend in a number of aspects those recently obtained by Cha (2010): (i) GSPH provides a much improved description of contact discontinuities, with respect to SPH, thus avoiding the appearance of spurious pressure forces; (ii) GSPH is able to follow the development of gas-dynamical instabilities, such as the Kevin--Helmholtz and the Rayleigh-Taylor ones; (iii) as a result, GSPH describes the development of curl structures in the shear-flow test and the dissolution of the cold cloud in the "blob" test. We also discuss in detail the effect on the performances of GSPH of changing different aspects of its implementation. The results of our tests demonstrate that GSPH is in fact a highly promising hydrodynamic scheme, also to be coupled to an N-body solver, for astrophysical and cosmological applications. [abridged]Comment: 19 pages, 13 figures, MNRAS accepted, high resolution version can be obtained at http://adlibitum.oats.inaf.it/borgani/html/papers/gsph_hydrosim.pd

    Who Contributes to the Knowledge Sharing Economy?

    Full text link
    Information sharing dynamics of social networks rely on a small set of influencers to effectively reach a large audience. Our recent results and observations demonstrate that the shape and identity of this elite, especially those contributing \emph{original} content, is difficult to predict. Information acquisition is often cited as an example of a public good. However, this emerging and powerful theory has yet to provably offer qualitative insights on how specialization of users into active and passive participants occurs. This paper bridges, for the first time, the theory of public goods and the analysis of diffusion in social media. We introduce a non-linear model of \emph{perishable} public goods, leveraging new observations about sharing of media sources. The primary contribution of this work is to show that \emph{shelf time}, which characterizes the rate at which content get renewed, is a critical factor in audience participation. Our model proves a fundamental \emph{dichotomy} in information diffusion: While short-lived content has simple and predictable diffusion, long-lived content has complex specialization. This occurs even when all information seekers are \emph{ex ante} identical and could be a contributing factor to the difficulty of predicting social network participation and evolution.Comment: 15 pages in ACM Conference on Online Social Networks 201

    Ultrafast-pulse diagnostic using third-order frequency-resolved optical gating in organic films

    Get PDF
    We report on the diagnostic of ultrafast pulses by frequency-resolved optical gating (FROG) based on strong third-harmonic generation (THG) in amorphous organic thin films. The high THG conversion efficiency of these films allows for the characterization of sub-nanojoule short pulses emitting at telecommunication wavelengths using a low cost portable fiber spectrometer

    Superfluid-insulator transition of the Josephson junction array model with commensurate frustration

    Full text link
    We have studied the rationally frustrated Josephson-junction array model in the square lattice through Monte Carlo simulations of (2+1)(2+1)D XY-model. For frustration f=1/4f=1/4, the model at zero temperature shows a continuous superfluid-insulator transition. From the measurement of the correlation function and the superfluid stiffness, we obtain the dynamical critical exponent z=1.0z=1.0 and the correlation length critical exponent ν=0.4±0.05\nu=0.4 \pm 0.05. While the dynamical critical exponent is the same as that for cases f=0f=0, 1/2, and 1/3, the correlation length critical exponent is surprisingly quite different. When f=1/5f=1/5, we have the nature of a first-order transition.Comment: RevTex 4, to appear in PR
    • …
    corecore