42,057 research outputs found
Experimental hut comparisons of nets treated with carbamate or pyrethroid insecticides, washed or unwashed, against pyrethroid-resistant mosquitoes.
The efficacy against mosquitoes (Diptera: Culicidae) of a bednet treated with carbamate insecticide [carbosulfan capsule suspension (CS) 200 mg/m(2)] was compared with four types of pyrethroid-treated nets in veranda-trap huts at Yaokoffikro near Bouaké, Côte d'Ivoire, where the malaria vector Anopheles gambiae Giles carries the kdr gene (conferring pyrethroid resistance) at high frequency and Culex quinquefasciatus Say is also pyrethroid resistant. Pyrethroids compared were lambdacyhalothrin CS 18 mg/m(2), alphacypermethrin water dispersible granules (WG) 20 mg/m(2), deltamethrin 50 mg/m(2) (Permanet) and permethrin emulsifiable concentrate (EC) 500 mg/m(2). Insecticidal power and personal protection from mosquito bites were assessed before and after the nets were used for 8 months and hand washed five times in cold soapy water. Before washing, all treatments except permethrin significantly reduced blood-feeding and all had significant insecticidal activity against An. gambiae. The carbosulfan net gave significantly higher killing of An. gambiae than all pyrethroid treatments except the Permanet. Against Culex spp., carbosulfan was more insecticidal and gave a significantly better protective effect than any of the pyrethroid treatments. After washing, treated nets retained various degrees of efficacy against both mosquito genera - but least for the carbosulfan net. Washed nets with three types of pyrethroid treatment (alphacypermethrin, lambdacyhalothrin, permethrin) gave significantly higher mortality rates of Culex than in huts with the same pyrethroid-treated nets before washing. After five washes, the Permanet, which is sold as a long-lasting insecticidal product, performed no better than the other nets in our experimental conditions
Toxin-Antitoxin Systems of Staphylococcus aureus
Toxin-antitoxin (TA) systems are small genetic elements found in the majority of prokaryotes. They encode toxin proteins that interfere with vital cellular functions and are counteracted by antitoxins. Dependent on the chemical nature of the antitoxins (protein or RNA) and how they control the activity of the toxin, TA systems are currently divided into six different types. Genes comprising the TA types I, II and III have been identified in Staphylococcus aureus. MazF, the toxin of the mazEF locus is a sequence-specific RNase that cleaves a number of transcripts, including those encoding pathogenicity factors. Two yefM-yoeB paralogs represent two independent, but auto-regulated TA systems that give rise to ribosome-dependent RNases. In addition, omega/epsilon/zeta constitutes a tripartite TA system that supposedly plays a role in the stabilization of resistance factors. The SprA1/SprA1AS and SprF1/SprG1 systems are post-transcriptionally regulated by RNA antitoxins and encode small membrane damaging proteins. TA systems controlled by interaction between toxin protein and antitoxin RNA have been identified in S. aureus in silico, but not yet experimentally proven. A closer inspection of possible links between TA systems and S. aureus pathophysiology will reveal, if these genetic loci may represent druggable targets. The modification of a staphylococcal TA toxin to a cyclopeptide antibiotic highlights the potential of TA systems as rather untapped sources of drug discovery
Infall of gas as the formation mechanism of stars up to 20 times more massive than the Sun
Theory predicts and observations confirm that low-mass stars (like the Sun)
in their early life grow by accreting gas from the surrounding material. But
for stars ~ 10 times more massive than the Sun (~10 M_sun), the powerful
stellar radiation is expected to inhibit accretion and thus limit the growth of
their mass. Clearly, stars with masses >10 M_sun exist, so there must be a way
for them to form. The problem may be solved by non-spherical accretion, which
allows some of the stellar photons to escape along the symmetry axis where the
density is lower. The recent detection of rotating disks and toroids around
very young massive stars has lent support to the idea that high-mass (> 8
M_sun) stars could form in this way. Here we report observations of an ammonia
line towards a high-mass star forming region. We conclude from the data that
the gas is falling inwards towards a very young star of ~20 M_sun, in line with
theoretical predictions of non-spherical accretion.Comment: 11 pages, 2 figure
Review Article of Lawson, Todd. 'The Crucifixion and the Qur’an: A Study in the History of Muslim Thought'
A model for orientation effects in electron‐transfer reactions
A method for solving the single‐particle Schrödinger equation with an oblate spheroidal potential of finite depth is presented. The wave functions are then used to calculate the matrix element T_BA which appears in theories of nonadiabatic electron transfer. The results illustrate the effects of mutual orientation and separation of the two centers on TBA. Trends in these results are discussed in terms of geometrical and nodal structure effects. Analytical expressions related to T_BA for states of spherical wells are presented and used to analyze the nodal structure effects for T_BA for the spheroidal wells
Atomic spectrometry updates. Review of advances in elemental speciation
This is the sixth Atomic Spectrometry Update (ASU) to focus specifically on advances in elemental speciation and covers a period of approximately 12 months from December 2012. This review deals with all aspects of the analytical speciation methods developed for: the determination of oxidation states; organometallic compounds; coordination compounds; metal and heteroatom- containing biomolecules, including metalloproteins, proteins, peptides and amino acids; and the use of metal-tagging to facilitate detection via atomic spectrometry. The review does not specifically deal with fractionation, sometimes termed operationally defined speciation. As with all ASU reviews 1-5 the coverage of the topic is confined to those methods that incorporate atomic spectrometry as the measurement technique. However, molecular MS techniques are covered where the use is in parallel or series with atomic spectrometry. As with previous years As and Se speciation continues to dominate current literature. However, research is moving further towards understanding the toxicological and beneficial mechanisms of these two elements. There is also in increase in macromolecular analysis, with a decrease in detection limits for some methodologies, which increases the potential clinical use of the techniques employed. The use of both atomic and molecular spectrometry is well developed in these fields, highlighting the interdisciplinary nature of today's research environment. The trend towards lower cost more rapid analytical methods, often involving non-chromatographic speciation, also continues apace. This journal is © 2014 the Partner Organisations
Evaluation of an interview skills training package for adolescents with speech, language and communication needs
BACKGROUND & AIMS: We evaluated a structured intervention programme aimed at preparing adolescents with developmental language disorders for job interviews. Our primary outcome measures included change in ratings of verbal and non‐verbal social communication behaviours evident during mock interviews.
METHODS & PROCEDURES:
In study 1, 12 participants, aged 17–19 years, from a specialist sixth‐form college completed the intervention and two mock interviews, one pre‐ and one post‐intervention. In study 2, 34 participants, aged 17–19 years, completed a modified intervention programme and three mock interviews, one at baseline (included to control for possible practise effects), one pre‐ and one post‐intervention. In both studies, interviews were video recorded and social communication behaviours were coded by independent assessors blind to interview time, participant diagnosis and therapy content. A repeated‐measures design was employed to measure change in communication behaviours.
OUTCOMES & RESULTS:
In study 1, a significant increase in the number of ‘positive’ verbal and non‐verbal social communication behaviours was observed from pre‐ to post‐intervention. However, there was no significant change in the number of ‘negative’ behaviours (i.e., fidgeting, irrelevant remarks). In study 2, there were no significant changes in verbal behaviours, but significant group differences (though wide individual variation) in both positive and negative non‐verbal social communication behaviours.
CONCLUSIONS & IMPLICATIONS:
Our findings suggest that training specific social communication skills that are important for interview success, and consistently reinforcing those behaviours during therapy practice, can increase the use of those skills in an interview setting, though in this heterogeneous population there was considerable variation in therapy outcome. The skills of the interviewer were identified as a potential source of variation in outcome, and a target for future research and practice
Potentiality in Biology
We take the potentialities that are studied in the biological sciences (e.g., totipotency) to be an important subtype of biological dispositions. The goal of this paper is twofold: first, we want to provide a detailed understanding of what biological dispositions are. We claim that two features are essential for dispositions in biology: the importance of the manifestation process and the diversity of conditions that need to be satisfied for the disposition to be manifest. Second, we demonstrate that the concept of a disposition (or potentiality) is a very useful tool for the analysis of the explanatory practice in the biological sciences. On the one hand it allows an in-depth analysis of the nature and diversity of the conditions under which biological systems display specific behaviors. On the other hand the concept of a disposition may serve a unificatory role in the philosophy of the natural sciences since it captures not only the explanatory practice of biology, but of all natural sciences. Towards the end we will briefly come back to the notion of a potentiality in biology
Game theory of mind
This paper introduces a model of ‘theory of mind’, namely, how we represent the intentions and goals of others to optimise our mutual interactions. We draw on ideas from optimum control and game theory to provide a ‘game theory of mind’. First, we consider the representations of goals in terms of value functions that are prescribed by utility or rewards. Critically, the joint value functions and ensuing behaviour are optimised recursively, under the assumption that I represent your value function, your representation of mine, your representation of my representation of yours, and so on ad infinitum. However, if we assume that the degree of recursion is bounded, then players need to estimate the opponent's degree of recursion (i.e., sophistication) to respond optimally. This induces a problem of inferring the opponent's sophistication, given behavioural exchanges. We show it is possible to deduce whether players make inferences about each other and quantify their sophistication on the basis of choices in sequential games. This rests on comparing generative models of choices with, and without, inference. Model comparison is demonstrated using simulated and real data from a ‘stag-hunt’. Finally, we note that exactly the same sophisticated behaviour can be achieved by optimising the utility function itself (through prosocial utility), producing unsophisticated but apparently altruistic agents. This may be relevant ethologically in hierarchal game theory and coevolution
Universal Conductance Distribution in the Quantum Size Regime
We study the conductance (g) distribution function of an ensemble of isolated
conducting rings, with an Aharonov--Bohm flux. This is done in the discrete
spectrum limit, i.e., when the inelastic rate, frequency and temperature are
all smaller than the mean level spacing. Over a wide range of g the
distribution function exhibits universal behavior P(g)\sim g^{-(4+\beta)/3},
where \beta=1 (2) for systems with (without) a time reversal symmetry. The
nonuniversal large g tail of this distribution determines the values of high
moments.Comment: 13 pages+1 figure, RevTEX
- …
