40 research outputs found

    Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A

    Get PDF
    International audienceAims/Hypothesis: Reduced skeletal muscle insulin sensitivity is a feature associated with sustained exposure to excess saturated fatty acids (SFA), whereas mono and polyunsaturated fatty acids (MUFA and PUFA) not only improve insulin sensitivity but blunt SFA-induced insulin resistance. The mechanisms by which MUFAs and PUFAs institute these favourable changes remain unclear, but may involve stimulating insulin signalling by counter-modulation/repression of protein phosphatase 2A (PP2A). This study investigated the effects of oleic acid (OA; a MUFA), linoleic acid (LOA; a PUFA) and palmitate (PA; a SFA) in cultured myotubes and determined whether changes in insulin signalling can be attributed to PP2A regulation. Principal Findings: We treated cultured skeletal myotubes with unsaturated and saturated fatty acids and evaluated insulin signalling, phosphorylation and methylation status of the catalytic subunit of PP2A. Unlike PA, sustained incubation of rat or human myotubes with OA or LOA significantly enhanced Akt-and ERK1/2-directed insulin signalling. This was not due to heightened upstream IRS1 or PI3K signalling nor to changes in expression of proteins involved in proximal insulin signalling, but was associated with reduced dephosphorylation/inactivation of Akt and ERK1/2. Consistent with this, PA reduced PP2Ac demethylation and tyrosine 307 phosphorylation-events associated with PP2A activation. In contrast, OA and LOA strongly opposed these PA-induced changes in PP2Ac thus exerting a repressive effect on PP2A.Conclusions/Interpretation: Beneficial gains in insulin sensitivity and the ability of unsaturated fatty acids to oppose palmitate-induced insulin resistance in muscle cells may partly be accounted for by counter-modulation of PP2A

    Characterising the inhibitory actions of ceramide upon insulin signaling in different skeletal muscle cell models:a mechanistic insight

    Get PDF
    International audienceCeramides are known to promote insulin resistance in a number of metabolically important tissues including skeletal muscle, the predominant site of insulin-stimulated glucose disposal. Depending on cell type, these lipid intermediates have been shown to inhibit protein kinase B (PKB/Akt), a key mediator of the metabolic actions of insulin, via two distinct pathways: one involving the action of atypical protein kinase C (aPKC) isoforms, and the second dependent on protein phosphatase-2A (PP2A). The main aim of this study was to explore the mechanisms by which ceramide inhibits PKB/Akt in three different skeletal muscle-derived cell culture models; rat L6 myotubes, mouse C2C12 myotubes and primary human skeletal muscle cells. Our findings indicate that the mechanism by which ceramide acts to repress PKB/Akt is related to the myocellular abundance of caveolin-enriched domains (CEM) present at the plasma membrane. Here, we show that ceramide-enriched-CEMs are markedly more abundant in L6 myotubes compared to C2C12 myotubes, consistent with their previously reported role in coordinating aPKC-directed repression of PKB/Akt in L6 muscle cells. In contrast, a PP2A-dependent pathway predominantly mediates ceramide-induced inhibition of PKB/Akt in C2C12 myotubes. In addition, we demonstrate for the first time that ceramide engages an aPKC-dependent pathway to suppress insulin-induced PKB/Akt activation in palmitate-treated cultured human muscle cells as well as in muscle cells from diabetic patients. Collectively, this work identifies key mechanistic differences, which may be linked to variations in plasma membrane composition, underlying the insulin-desensitising effects of ceramide in different skeletal muscle cell models that are extensively used in signal transduction and metabolic studies

    Translational Up-Regulation and High-Level Protein Expression from Plasmid Vectors by mTOR Activation via Different Pathways in PC3 and 293T Cells

    Get PDF
    BACKGROUND: Though 293T cells are widely used for expression of proteins from transfected plasmid vectors, the molecular basis for the high-level expression is yet to be understood. We recently identified the prostate carcinoma cell line PC3 to be as efficient as 293T in protein expression. This study was undertaken to decipher the molecular basis of high-level expression in these two cell lines. METHODOLOGY/PRINCIPAL FINDINGS: In a survey of different cell lines for efficient expression of platelet-derived growth factor-B (PDGF-B), β-galactosidase (β-gal) and green fluorescent protein (GFP) from plasmid vectors, PC3 was found to express at 5-50-fold higher levels compared to the bone metastatic prostate carcinoma cell line PC3BM and many other cell lines. Further, the efficiency of transfection and level of expression of the reporters in PC3 were comparable to that in 293T. Comparative analyses revealed that the high level expression of the reporters in the two cell lines was due to increased translational efficiency. While phosphatidic acid (PA)-mediated activation of mTOR, as revealed by drastic reduction in reporter expression by n-butanol, primarily contributed to the high level expression in PC3, multiple pathways involving PA, PI3K/Akt and ERK1/2 appear to contribute to the abundant reporter expression in 293T. Thus the extent of translational up-regulation attained through the concerted activation of mTOR by multiple pathways in 293T could be achieved through its activation primarily by the PA pathway in PC3. CONCLUSIONS/SIGNIFICANCE: Our studies reveal that the high-level expression of proteins from plasmid vectors is effected by translational up-regulation through mTOR activation via different signaling pathways in the two cell lines and that PC3 is as efficient as 293T for recombinant protein expression. Further, PC3 offers an advantage in that the level of expression of the protein can be regulated by simple addition of n-butanol to the culture medium

    Phospholipase D inhibitors reduce human prostate cancer cell proliferation and colony formation

    Get PDF
    BACKGROUND: Phospholipases D1 and D2 (PLD1/2) hydrolyse cell membrane glycerophospholipids to generate phosphatidic acid, a signalling lipid, which regulates cell growth and cancer progression through effects on mTOR and PKB/Akt. PLD expression and/or activity is raised in breast, colorectal, gastric, kidney and thyroid carcinomas but its role in prostate cancer (PCa), the major cancer of men in the western world, is unclear. METHODS: PLD1 protein expression in cultured PNT2C2, PNT1A, P4E6, LNCaP, PC3, PC3M, VCaP, 22RV1 cell lines and patient-derived PCa cells was analysed by western blotting. PLD1 protein localisation in normal, benign prostatic hyperplasia (BPH), and castrate-resistant prostate cancer (CRPC) tissue sections and in a PCa tissue microarray (TMA) was examined by immunohistochemistry. PLD activity in PCa tissue was assayed using an Amplex Red method. The effect of PLD inhibitors on PCa cell viability was measured using MTS and colony forming assays. RESULTS: PLD1 protein expression was low in the luminal prostate cell lines (LNCaP, VCaP, 22RV1) compared with basal lines (PC3 and PC3M). PLD1 protein expression was elevated in BPH biopsy tissue relative to normal and PCa samples. In normal and BPH tissue, PLD1 was predominantly detected in basal cells as well in some stromal cells, rather than in luminal cells. In PCa tissue, luminal cells expressed PLD1. In a PCa TMA, the mean peroxidase intensity per DAB-stained Gleason 6 and 7 tissue section was significantly higher than in sections graded Gleason 9. In CRPC tissue, PLD1 was expressed prominently in the stromal compartment, in luminal cells in occasional glands and in an expanding population of cells that co-expressed chromogranin A and neurone-specific enolase. Levels of PLD activity in normal and PCa tissue samples were similar. A specific PLD1 inhibitor markedly reduced the survival of both prostate cell lines and patient-derived PCa cells compared with two dual PLD1/PLD2 inhibitors. Short-term exposure of PCa cells to the same specific PLD1 inhibitor significantly reduced colony formation. CONCLUSIONS: A new specific inhibitor of PLD1, which is well tolerated in mice, reduces PCa cell survival and thus has potential as a novel therapeutic agent to reduce prostate cancer progression. Increased PLD1 expression may contribute to the hyperplasia characteristic of BPH and in the progression of castrate-resistant PCa, where an expanding population of neuroendocrine-like cells express PLD1.British Journal of Cancer advance online publication, 14 November 2017; doi:10.1038/bjc.2017.391 www.bjcancer.com

    Pure word deafness following left temporal damage: Behavioral and neuroanatomical evidence from a new case.

    No full text
    Pure Word Deafness (PWD) is a rare disorder, characterized by selective loss of speech input processing. Its most common cause is temporal damage to the primary auditory cortex of both hemispheres, but it has been reported also following unilateral lesions. In unilateral cases, PWD has been attributed to the disconnection of Wernicke's area from both right and left primary auditory cortex. Here we report behavioral and neuroimaging evidence from a new case of left unilateral PWD with both cortical and white matter damage due to a relatively small stroke lesion in the left temporal gyrus. Selective impairment in auditory language processing was accompanied by intact processing of nonspeech sounds and normal speech, reading and writing. Performance on dichotic listening was characterized by a reversal of the right-ear advantage typically observed in healthy subjects. Cortical thickness and gyral volume were severely reduced in the left superior temporal gyrus (STG), although abnormalities were not uniformly distributed and residual intact cortical areas were detected, for example in the medial portion of the Heschl's gyrus. Diffusion tractography documented partial damage to the acoustic radiations (AR), callosal temporal connections and intralobar tracts dedicated to single words comprehension. Behavioral and neuroimaging results in this case are difficult to integrate in a pure cortical or disconnection framework, as damage to primary auditory cortex in the left STG was only partial and Wernicke's area was not completely isolated from left or right-hemisphere input. On the basis of our findings we suggest that in this case of PWD, concurrent partial topological (cortical) and disconnection mechanisms have contributed to a selective impairment of speech sounds. The discrepancy between speech and non-speech sounds suggests selective damage to a language-specific left lateralized network involved in phoneme processing
    corecore