68 research outputs found

    Use of Individual-Level Covariates to Improve Latent Class Analysis of Trypanosoma Cruzi Diagnostic Tests

    Get PDF
    Statistical methods such as latent class analysis can estimate the sensitivity and specificity of diagnostic tests when no perfect reference test exists. Traditional latent class methods assume a constant disease prevalence in one or more tested populations. When the risk of disease varies in a known way, these models fail to take advantage of additional information that can be obtained by measuring risk factors at the level of the individual. We show that by incorporating complex field-based epidemiologic data, in which the disease prevalence varies as a continuous function of individual-level covariates, our model produces more accurate sensitivity and specificity estimates than previous methods. We apply this technique to several simulated populations and to actual Chagas disease test data from a community near Arequipa, Peru. Results from our model estimate that the first-line enzyme-linked immunosorbent assay has a sensitivity of 78% (95% CI: 62-100%) and a specificity of 100% (95% CI: 99-100%). The confirmatory immunofluorescence assay is estimated to be 73% sensitive (95% CI: 65-81%) and 99% specific (95% CI: 96-100%)

    Impact of two interventions on timeliness and data quality of an electronic disease surveillance system in a resource limited setting (Peru): a prospective evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A timely detection of outbreaks through surveillance is needed in order to prevent future pandemics. However, current surveillance systems may not be prepared to accomplish this goal, especially in resource limited settings. As data quality and timeliness are attributes that improve outbreak detection capacity, we assessed the effect of two interventions on such attributes in Alerta, an electronic disease surveillance system in the Peruvian Navy.</p> <p>Methods</p> <p>40 Alerta reporting units (18 clinics and 22 ships) were included in a 12-week prospective evaluation project. After a short refresher course on the notification process, units were randomly assigned to either a phone, visit or control group. Phone group sites were called three hours before the biweekly reporting deadline if they had not sent their report. Visit group sites received supervision visits on weeks 4 & 8, but no phone calls. The control group sites were not contacted by phone or visited. Timeliness and data quality were assessed by calculating the percentage of reports sent on time and percentage of errors per total number of reports, respectively.</p> <p>Results</p> <p>Timeliness improved in the phone group from 64.6% to 84% in clinics (+19.4 [95% CI, +10.3 to +28.6]; p < 0.001) and from 46.9% to 77.3% on ships (+30.4 [95% CI, +16.9 to +43.8]; p < 0.001). Visit and control groups did not show significant changes in timeliness. Error rates decreased in the visit group from 7.1% to 2% in clinics (-5.1 [95% CI, -8.7 to -1.4]; p = 0.007), but only from 7.3% to 6.7% on ships (-0.6 [95% CI, -2.4 to +1.1]; p = 0.445). Phone and control groups did not show significant improvement in data quality.</p> <p>Conclusion</p> <p>Regular phone reminders significantly improved timeliness of reports in clinics and ships, whereas supervision visits led to improved data quality only among clinics. Further investigations are needed to establish the cost-effectiveness and optimal use of each of these strategies.</p

    A History of Chagas Disease Transmission, Control, and Re-Emergence in Peri-Rural La Joya, Peru

    Get PDF
    The historically rural problem of Chagas disease is increasing in urban areas in Latin America. Peri-rural development may play a critical role in the urbanization of Chagas disease and other parasitic infections. We conducted a cross-sectional study in an urbanizing rural area in southern Peru, and we encountered a complex history of Chagas disease in this peri-rural environment. Specifically, we discovered: (1) long-standing parasite transmission leading to substantial burden of infection; (2) interruption in parasite transmission resulting from an undocumented insecticide application campaign; (3) relatively rapid re-emergence of parasite-infected vector insects resulting from an unsustained control campaign; (4) extensive migration among peri-rural inhabitants. Long-standing parasite infection in peri-rural areas with highly mobile populations provides a plausible mechanism for the expansion of parasite transmission to nearby urban centers. Lack of commitment to control campaigns in peri-rural areas may have unforeseen and undesired consequences for nearby urban centers. Novel methods and perspectives are needed to address the complexities of human migration and erratic interventions

    A Field Trial of Alternative Targeted Screening Strategies for Chagas Disease in Arequipa, Peru

    Get PDF
    In the wake of emerging T. cruzi infection in children of periurban Arequipa, Peru, we conducted a prospective field trial to evaluate alternative targeted screening strategies for Chagas disease across the city. Using insect vector data that is routinely collected during Ministry of Health insecticide application campaigns in 3 periurban districts of Arequipa, we separated into 4 categories those households with 1) infected vectors; 2) high vector densities; 3) low vector densities; and 4) no vectors. Residents of all infected-vector households and a random sample of those in the other 3 categories were invited for serological screening for T. cruzi infection. Subsequently, all residents of households within a 15-meter radius of detected seropositive individuals were invited to be screened in a ring case-detection scheme. Of 923 participants, 21 (2.28%) were seropositive. There were no significant differences in prevalence across the 4 screening strategies, indicating that household entomologic factors alone could not predict the risk of infection. Indeed, the most predictive variable of infection was the number of years a person lived in a location with triatomine insects. Therefore, a simple residence history questionnaire may be a useful screening tool in large, diverse urban environments with emerging Chagas disease

    Barriers of attendance to dog rabies static point vaccination clinics in Blantyre, Malawi

    Get PDF
    <div><p>Rabies is a devastating yet preventable disease that causes around 59,000 human deaths annually. Almost all human rabies cases are caused by bites from rabies-infected dogs. A large proportion of these cases occur in Sub Saharan Africa (SSA). Annual vaccination of at least 70% of the dog population is recommended by the World Health Organisation in order to eliminate rabies. However, achieving such high vaccination coverage has proven challenging, especially in low resource settings. Despite being logistically and economically more feasible than door-to-door approaches, static point (SP) vaccination campaigns often suffer from low attendance and therefore result in low vaccination coverage. Here, we investigated the barriers to attendance at SP offering free rabies vaccinations for dogs in Blantyre, Malawi. We analysed data for 22,924 dogs from a city-wide vaccination campaign in combination with GIS and household questionnaire data using multivariable logistic regression and distance estimation techniques. We found that distance plays a crucial role in SP attendance (i.e. for every km closer the odds of attending a SP point are 3.3 times higher) and that very few people are willing to travel more than 1.5 km to bring their dog for vaccination. Additionally, we found that dogs from areas with higher proportions of people living in poverty are more likely to be presented for vaccination (ORs 1.58-2.22). Furthermore, puppies (OR 0.26), pregnant or lactating female dogs (OR 0.60) are less likely to be presented for vaccination. Owners also reported that they did not attend an SP because they were not aware of the campaign (27%) or they could not handle their dog (19%). Our findings will inform the design of future rabies vaccination programmes in SSA which may lead to improved vaccination coverage achieved by SP alone.</p></div

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of δCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Get PDF
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model
    corecore