8,328 research outputs found

    Hexagonal spiral growth in the absence of a substrate

    Full text link
    Experiments on the formation of spiraling hexagons (350 - 1000 nm in width) from a solution of nanoparticles are presented. Transmission electron microscopy images of the reaction products of chemically synthesized cadmium nanocrystals indicate that the birth of the hexagons proceeds without assistance from static screw or edge dislocatons, that is, they spiral without constraints provided by an underlying substrate. Instead, the apparent growth mechanism relies on what we believe is a dynamical dislocation identified as a dense aggregate of small nanocrystals that straddles the spiraling hexagon at the crystal surface. This nanocrystal bundle, which we term the "feeder", also appears to release nanocrystals into the spiral during the growth process.Comment: 4 pages, 5 figure

    Reframing Child Custody Decisionmaking

    Get PDF

    Rotational apparent mass by electrical analogy

    Get PDF
    Electrical analogy technique for determining rotational apparent masses of body in two- dimensional fluid flo

    Gravity-Yang-Mills-Higgs unification by enlarging the gauge group

    Full text link
    We revisit an old idea that gravity can be unified with Yang-Mills theory by enlarging the gauge group of gravity formulated as gauge theory. Our starting point is an action that describes a generally covariant gauge theory for a group G. The Minkowski background breaks the gauge group by selecting in it a preferred gravitational SU(2) subgroup. We expand the action around this background and find the spectrum of linearized theory to consist of the usual gravitons plus Yang-Mills fields charged under the centralizer of the SU(2) in G. In addition, there is a set of Higgs fields that are charged both under the gravitational and Yang-Mills subgroups. These fields are generically massive and interact with both gravity and Yang-Mills sector in the standard way. The arising interaction of the Yang-Mills sector with gravity is also standard. Parameters such as the Yang-Mills coupling constant and Higgs mass arise from the potential function defining the theory. Both are realistic in the sense explained in the paper.Comment: 61 pages, no figures (v2) some typos correcte

    Studying High Energy Final State Interactions by N/D Method

    Full text link
    We discuss the final state interaction effects at high energies via a multi-channel N/D method. We find that the 2 by 2 charge--exchange final state interactions typically contribute an enhancement factor of a few times 10210^{-2} in the BB meson decay amplitudes, both for the real and the imaginary part. We also make some discussions on the elastic rescattering effects.Comment: 10 pages, revte

    Azimuthal Correlation in Lepton-Hadron Scattering via Charged Weak-Current Processes

    Get PDF
    We consider the azimuthal correlation of the final-state particles in charged weak-current processes. This correlation provides a test of perturbative quantum chromodynamics. The azimuthal asymmetry is large in the semi-inclusive processes in which we identify a final-state hadron, say, a charged pion compared to that in the inclusive processes in which we do not identify final-state particles and use only the calorimetric information. In semi-inclusive processes the azimuthal asymmetry is more conspicuous when the incident lepton is an antineutrino or a positron than when the incident lepton is a neutrino or an electron. We analyze all the possible charged weak-current processes and study the quantitative aspects of each process. We also compare this result to the ep scattering with a photon exchange.Comment: 25 pages, 2 Postscript figures, uses RevTeX, fixes.st
    corecore