297 research outputs found
Uncoupled Hartree-Fock calculations of the polarizability and hyperpolarizabilities of nitrophenols
The polarizability and hyperpolarizabilities of nitrophenols as model compounds for studying nonlinear optics have been investigated at the Hartree-Fock level of approximation by means of the Dalgarno Uncoupled Hartree-Fock (DUHF) or Sum Over Orbitals (SOO) method. The additive character and the charge transfer effects in α,β,γ and have been analyzed in terms of the δ and π molecular orbital contributions, the contribution of the individual π molecular orbitals, and the contribution of the highest occupied and the lowest unoccupied\ud
molecular orbitals. Within the SOO approach, the reliability of the Two-Level Model has been tested and the influence of the rotation of the nitro group and of the presence of the intramolecular hydrogen bonding in ortho-nitrophenol have been studied. The results show that the present method is a reliable and efficient tool for the prediction of trends in the molecular polarizability and hyperpolarizabilities of large molecule
Seismic Vulnerability Analysis of a Coupled Tank-Piping System by Means of Hybrid Simulation and Acoustic Emission
AbstractIn order to shed light on the seismic response of complex industrial plants, advanced finite element models should take into account both multicomponents and relevant coupling effects. These models are usually computationally expensive and rely on significant computational resources. Moreover, the relationships between seismic action, system response and relevant damage levels are often characterized by a high level of nonlinearity, which requires a solid background of experimental data. Vulnerability and reliability analyses both depend on the adoption of a significant number of seismic waveforms that are generally not available when seismic risk evaluation is strictly site-specific. In addition, detection of most vulnerable components, i.e., pipe bends and welding points, is an important step to prevent leakage events. In order to handle these issues, a methodology based on a stochastic seismic ground motion model, hybrid simulation and acoustic emission is presented in this paper. The seismic model is able to generate synthetic ground motions coherent with site-specific analysis. In greater detail, the system is composed of a steel slender tank, i.e., the numerical substructure, and a piping network connected through a bolted flange joint, i.e., the physical substructure. Moreover, to monitor the seismic performance of the pipeline and harness the use of sensor technology, acoustic emission sensors are placed through the pipeline. Thus, real-time acoustic emission signals of the system under study are acquired using acoustic emission sensors. Moreover, in addition to seismic events, also a severe monotonic loading is exerted on the physical substructure. As a result, deformation levels of each critical component were investigated; and the processing of acoustic emission signals provided a more in-depth view of the damage of the analysed components
Rationale, design and conduct of a randomised controlled trial evaluating a primary care-based complex intervention to improve the quality of life of heart failure patients: HICMan (Heidelberg Integrated Case Management) : study protocol
Background: Chronic congestive heart failure (CHF) is a complex disease with rising prevalence, compromised quality of life (QoL), unplanned hospital admissions, high mortality and therefore high burden of illness. The delivery of care for these patients has been criticized and new strategies addressing crucial domains of care have been shown to be effective on patients' health outcomes, although these trials were conducted in secondary care or in highly organised Health Maintenance Organisations. It remains unclear whether a comprehensive primary care-based case management for the treating general practitioner (GP) can improve patients' QoL. Methods/Design: HICMan is a randomised controlled trial with patients as the unit of randomisation. Aim is to evaluate a structured, standardized and comprehensive complex intervention for patients with CHF in a 12-months follow-up trial. Patients from intervention group receive specific patient leaflets and documentation booklets as well as regular monitoring and screening by a prior trained practice nurse, who gives feedback to the GP upon urgency. Monitoring and screening address aspects of disease-specific selfmanagement, (non)pharmacological adherence and psychosomatic and geriatric comorbidity. GPs are invited to provide a tailored structured counselling 4 times during the trial and receive an additional feedback on pharmacotherapy relevant to prognosis (data of baseline documentation). Patients from control group receive usual care by their GPs, who were introduced to guidelineoriented management and a tailored health counselling concept. Main outcome measurement for patients' QoL is the scale physical functioning of the SF-36 health questionnaire in a 12-month follow-up. Secondary outcomes are the disease specific QoL measured by the Kansas City Cardiomyopathy questionnaire (KCCQ), depression and anxiety disorders (PHQ-9, GAD-7), adherence (EHFScBS and SANA), quality of care measured by an adapted version of the Patient Chronic Illness Assessment of Care questionnaire (PACIC) and NTproBNP. In addition, comprehensive clinical data are collected about health status, comorbidity, medication and health care utilisation. Discussion: As the targeted patient group is mostly cared for and treated by GPs, a comprehensive primary care-based guideline implementation including somatic, psychosomatic and organisational aspects of the delivery of care (HICMAn) is a promising intervention applying proven strategies for optimal care. Trial registration: Current Controlled Trials ISRCTN30822978
A hysteretic multiscale formulation for nonlinear dynamic analysis of composite materials
This article has been made available through the Brunel Open Access Publishing Fund.A new multiscale finite element formulation
is presented for nonlinear dynamic analysis of heterogeneous
structures. The proposed multiscale approach utilizes
the hysteretic finite element method to model the microstructure.
Using the proposed computational scheme, the micro-basis functions, that are used to map the microdisplacement components to the coarse mesh, are only evaluated once and remain constant throughout the analysis procedure. This is accomplished by treating inelasticity at the micro-elemental level through properly defined hysteretic evolution equations. Two types of imposed boundary conditions are considered for the derivation of the multiscale basis functions, namely the linear and periodic boundary conditions. The validity of the proposed formulation as well as its computational efficiency are verified through illustrative numerical experiments
A strategy to characterize the LISA-Pathfinder cold gas thruster system
The cold gas micro-propulsion system that will be used during the LISA-Pathfinder mission will be one of the most important component used to ensure the "free-fall" of the enclosed test masses. In this paper we present a possible strategy to characterize the effective direction and amplitude gain of each of the 6 thrusters of this system
In-flight thermal experiments for LISA pathfinder: simulating temperature noise at the inertial sensors
Thermal Diagnostics experiments to be carried out on board LISA Pathfinder (LPF) will yield a detailed characterisation of how temperature fluctuations affect the LTP (LISA Technology Package) instrument performance, a crucial information for future space based gravitational wave detectors as the proposed eLISA. Amongst them, the study of temperature gradient fluctuations around the test masses of the Inertial Sensors will provide as well information regarding the contribution of the Brownian noise, which is expected to limit the LTP sensitivity at frequencies close to 1 mHz during some LTP experiments. In this paper we report on how these kind of Thermal Diagnostics experiments were simulated in the last LPF Simulation Campaign (November, 2013) involving all the LPF Data Analysis team and using an end-to-end simulator of the whole spacecraft. Such simulation campaign was conducted under the framework of the preparation for LPF operations
Free-flight experiments in LISA Pathfinder
The LISA Pathfinder mission will demonstrate the technology of drag-free test
masses for use as inertial references in future space-based gravitational wave
detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free
flight about a test mass while measuring the acceleration of this primary test
mass relative to a second reference test mass. Because the reference test mass
is contained within the same spacecraft, it is necessary to apply forces on it
to maintain its position and attitude relative to the spacecraft. These forces
are a potential source of acceleration noise in the LISA Pathfinder system that
are not present in the full LISA configuration. While LISA Pathfinder has been
designed to meet it's primary mission requirements in the presence of this
noise, recent estimates suggest that the on-orbit performance may be limited by
this `suspension noise'. The drift-mode or free-flight experiments provide an
opportunity to mitigate this noise source and further characterize the
underlying disturbances that are of interest to the designers of LISA-like
instruments. This article provides a high-level overview of these experiments
and the methods under development to analyze the resulting data.Comment: 13 pages, 5 figures. Accepted to Journal Of Physics, Conference
Series. Presented at 10th International LISA Symposium, May 2014,
Gainesville, FL, US
The LISA pathfinder mission
ISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter.
The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper
- …