2,413 research outputs found

    Density functional approach for inhomogeneous star polymers

    Full text link
    We propose microscopic density functional theory for inhomogeneous star polymers. Our approach is based on fundamental measure theory for hard spheres, and on Wertheim's first- and second-order perturbation theory for the interparticle connectivity. For simplicity we consider a model in which all the arms are of the same length, but our approach can be easily extended to the case of stars with arms of arbitrary lengths.Comment: 4 pages, 3 figures, submitte

    Depletion potentials near geometrically structured substrates

    Full text link
    Using the recently developed so-called White Bear version of Rosenfeld's Fundamental Measure Theory we calculate the depletion potentials between a hard-sphere colloidal particle in a solvent of small hard spheres and simple models of geometrically structured substrates: a right-angled wedge or edge. In the wedge geometry, there is a strong attraction beyond the corresponding one near a planar wall that significantly influences the structure of colloidal suspensions in wedges. In accordance with an experimental study, for the edge geometry we find a free energy barrier of the order of several kBTk_B T which repels a big colloidal particle from the edge.Comment: 7 pages, 7 figure

    Density functional theory for colloidal mixtures of hard platelets, rods, and spheres

    Full text link
    A geometry-based density functional theory is presented for mixtures of hard spheres, hard needles and hard platelets; both the needles and the platelets are taken to be of vanishing thickness. Geometrical weight functions that are characteristic for each species are given and it is shown how convolutions of pairs of weight functions recover each Mayer bond of the ternary mixture and hence ensure the correct second virial expansion of the excess free energy functional. The case of sphere-platelet overlap relies on the same approximation as does Rosenfeld's functional for strictly two-dimensional hard disks. We explicitly control contributions to the excess free energy that are of third order in density. Analytic expressions relevant for the application of the theory to states with planar translational and cylindrical rotational symmetry, e.g. to describe behavior at planar smooth walls, are given. For binary sphere-platelet mixtures, in the appropriate limit of small platelet densities, the theory differs from that used in a recent treatment [L. Harnau and S. Dietrich, Phys. Rev. E 71, 011504 (2004)]. As a test case of our approach we consider the isotropic-nematic bulk transition of pure hard platelets, which we find to be weakly first order, with values for the coexistence densities and the nematic order parameter that compare well with simulation results.Comment: 39 pages, 8 figure

    Scientific Standards and the Regulation of Genetically Modified Insects

    Get PDF
    Experimental releases of genetically modified (GM) insects are reportedly being evaluated in various countries, including Brazil, the Cayman Islands (United Kingdom), France, Guatemala, India, Malaysia, Mexico, Panama, Philippines, Singapore, Thailand, the United States of America, and Vietnam. GM mosquitoes (Aedes aegypti) have already been released for field trials into inhabited areas in the Cayman Islands (2009–?), Malaysia (2010–2011), and Brazil (2011–2012). Here, we assess the regulatory process in the first three countries permitting releases (Malaysia, US, and the Cayman Islands) in terms of pre-release transparency and scientific quality. We find that, despite 14 US government–funded field trials over the last 9 years (on a moth pest of cotton), there has been no scientific publication of experimental data, and in only two instances have permit applications been published. The world's first environmental impact statement (EIS) on GM insects, produced by US authorities in 2008, is found to be scientifically deficient on the basis that (1) most consideration of environmental risk is too generic to be scientifically meaningful; (2) it relies on unpublished data to establish central scientific points; and (3) of the approximately 170 scientific publications cited, the endorsement of the majority of novel transgenic approaches is based on just two laboratory studies in only one of the four species covered by the document. We find that it is not possible to determine from documents publically available prior to the start of releases if obvious hazards of the particular GM mosquitoes released in Malaysia, the Cayman Islands, and Brazil received expert examination. Simple regulatory measures are proposed that would build public confidence and stimulate the independent experimental studies that environmental risk assessments require. Finally, a checklist is provided to assist the general public, journalists, and lawmakers in determining, from documents issued by regulators prior to the start of releases, whether permit approval is likely to have a scientifically high quality basi

    Improvement Research Carried Out Through Networked Communities: Accelerating Learning about Practices that Support More Productive Student Mindsets

    Get PDF
    The research on academic mindsets shows significant promise for addressing important problems facing educators. However, the history of educational reform is replete with good ideas for improvement that fail to realize the promises that accompany their introduction. As a field, we are quick to implement new ideas but slow to learn how to execute well on them. If we continue to implement reform as we always have, we will continue to get what we have always gotten. Accelerating the field's capacity to learn in and through practice to improve is one key to transforming the good ideas discussed at the White House meeting into tools, interventions, and professional development initiatives that achieve effectiveness reliably at scale. Toward this end, this paper discusses the function of networked communities engaged in improvement research and illustrates the application of these ideas in promoting greater student success in community colleges. Specifically, this white paper:* Introduces improvement research and networked communities as ideas that we believe can enhance educators' capacities to advance positive change. * Explains why improvement research requires a different kind of measures -- what we call practical measurement -- that are distinct from those commonly used by schools for accountability or by researchers for theory development.* Illustrates through a case study how systematic improvement work to promote student mindsets can be carried out. The case is based on the Carnegie Foundation's effort to address the poor success rates for students in developmental math at community colleges.Specifically, this case details:- How a practical theory and set of practical measures were created to assess the causes of "productive persistence" -- the set of "non-cognitive factors" thought to powerfully affect community college student success. In doing this work, a broad set of potential factors was distilled into a digestible framework that was useful topractitioners working with researchers, and a large set of potential measures was reduced to a practical (3-minute) set of assessments.- How these measures were used by researchers and practitioners for practical purposes -- specifically, to assess changes, predict which students were at-risk for course failure, and set priorities for improvement work.-How we organized researchersto work with practitioners to accelerate field-based experimentation on everyday practices that promote academic mindsets(what we call alpha labs), and how we organized practitioners to work with researchers to test, revise, refine, and iteratively improve their everyday practices (using plando-study-act cycles).While significant progress has already occurred, robust, practical, reliable efforts to improve students' mindsets remains at an early formative stage. We hope the ideas presented here are an instructive starting point for new efforts that might attempt to address other problems facing educators, most notably issues of inequality and underperformance in K-12 settings

    First Gale Western Butte Capping-Unit Compositions, and Relationships to Earlier Units Along Curiosity's Traverse

    Get PDF
    The Curiosity rover has been traversing through the clay-bearing unit (Glen Torridon; GT), approaching Greenheugh pediment, a large, fan-shaped surface surrounding the mouth of Gediz Vallis on the lower slope of Mt. Sharp. The pediment unconformably overlies the underlying bedrock, and is hence younger than units of the Mt. Sharp group. Orbital imaging of the pediment has shown it to have a slightly lower albedo and higher thermal inertia than neighboring units, to be relatively retentive of craters (e.g., erosion resistant), and to exhibit curved bedforms suggestive of lithified eolian bedforms. No diagnostic spectral signature has been observed from orbit. Recent rover positions allowed remote imaging of the contact between Greenheugh pediment and the eroded Murray formation strata below it, showing that the pediment capping material is cross-bedded and relatively thin (1-3 m), and suggesting that the pediment may have been much larger at one time. As Curiosity approached the edge of the pediment, the team investigated two buttes named Central and Western. The latter butte contains dark capping material that initially looked similar to the pediment cap, but close inspection revealed important physical differences. Here we report on compositions from ChemCam of two float rocks that appear to have rolled down from the capping unit, and on potential relation-ships to other targets along the traverse of the rover

    Integral equations for simple fluids in a general reference functional approach

    Full text link
    The integral equations for the correlation functions of an inhomogeneous fluid mixture are derived using a functional Taylor expansion of the free energy around an inhomogeneous equilibrium distribution. The system of equations is closed by the introduction of a reference functional for the correlations beyond second order in the density difference from the equilibrium distribution. Explicit expressions are obtained for energies required to insert particles of the fluid mixture into the inhomogeneous system. The approach is illustrated by the determination of the equation of state of a simple, truncated Lennard--Jones fluid and the analysis of the behavior of this fluid near a hard wall. The wall--fluid integral equation exhibits complete drying and the corresponding coexisting densities are in good agreement with those obtained from the standard (Maxwell) construction applied to the bulk fluid. Self--consistency of the approach is examined by analyzing the virial/compressibility routes to the equation of state and the Gibbs--Duhem relation for the bulk fluid, and the contact density sum rule and the Gibbs adsorption equation for the hard wall problem. For the bulk fluid, we find good self--consistency for stable states outside the critical region. For the hard wall problem, the Gibbs adsorption equation is fulfilled very well near phase coexistence where the adsorption is large.For the contact density sum rule, we find some deviationsnear coexistence due to a slight disagreement between the coexisting density for the gas phase obtained from the Maxwell construction and from complete drying at the hard wall.Comment: 29 page

    Density functional theory and demixing of binary hard rod-polymer mixtures

    Full text link
    A density functional theory for a mixture of hard rods and polymers modeled as chains built of hard tangent spheres is proposed by combining the functional due to Yu and Wu for the polymer mixtures [J. Chem. Phys. {\bf 117}, 2368 (2002)] with the Schmidt's functional [Phys. Rev. E {\bf 63}, 50201 (2001)] for rod-sphere mixtures. As a simple application of the functional, the demixing transition into polymer-rich and rod-rich phases is examined. When the chain length increases, the phase boundary broadens and the critical packing fraction decreases. The shift of the critical point of a demixing transition is most noticeable for short chains.Comment: 4 pages,2 figures, in press, PR

    Magnetism of small V clusters embedded in a Cu fcc matrix: an ab initio study

    Full text link
    We present extensive first principles density functional theory (DFT) calculations dedicated to analyze the magnetic and electronic properties of small Vn_{n} clusters (n=1,2,3,4,5,6) embedded in a Cu fcc matrix. We consider different cluster structures such as: i) a single V impurity, ii) several V2_{2} dimers having different interatomic distance and varying local atomic environment, iii) V3_{3} and iv) V4_{4} clusters for which we assume compact as well as 2- and 1-dimensional atomic configurations and finally, in the case of the v) V5_{5} and vi) V6_{6} structures we consider a square pyramid and a square bipyramid together with linear arrays, respectively. In all cases, the V atoms are embedded as substitutional impurities in the Cu network. In general, and as in the free standing case, we have found that the V clusters tend to form compact atomic arrays within the cooper matrix. Our calculated non spin-polarized density of states at the V sites shows a complex peaked structure around the Fermi level that strongly changes as a function of both the interatomic distance and local atomic environment, a result that anticipates a non trivial magnetic behavior. In fact, our DFT calculations reveal, in each one of our clusters systems, the existence of different magnetic solutions (ferromagnetic, ferrimagnetic, and antiferromagnetic) with very small energy differences among them, a result that could lead to the existence of complex finite-temperature magnetic properties. Finally, we compare our results with recent experimental measurements.Comment: 7 pages and 4 figure
    • …
    corecore