28 research outputs found

    Temporal summation in a neuromimetic micropillar laser

    Get PDF
    Neuromimetic systems are systems mimicking the functionalities orarchitecture of biological neurons and may present an alternativepath for efficient computing and information processing. We demonstratehere experimentally temporal summation in a neuromimetic micropillarlaser with integrated saturable absorber. Temporal summation is theproperty of neurons to integrate delayed input stimuli and to respondby an all-or-none kind of response if the inputs arrive in a sufficientlysmall time window. Our system alone may act as a fast optical coincidence detector and paves the way to fast photonic spike processing networks

    Demonstration of coherent emission from high-β\beta photonic crystal nanolasers at room temperature

    Full text link
    We report on lasing at room temperature and at telecommunications wavelength from photonic crystal nanocavities based on InAsP/InP quantum dots. Such laser cavities with a small modal volume and high quality factor display a high spontaneous emission coupling factor beta. Lasing is confirmed by measuring the second order autocorrelation function. A smooth transition from chaotic to coherent emission is observed, and coherent emission is obtained at 8 times the threshold power

    Nonlinear mechanics with photonic crystal nanomembranes

    Full text link
    Optomechanical systems close to their quantum ground state and nonlinear nanoelectromechanical systems are two hot topics of current physics research. As high-reflectivity and low mass are crucial features to improve optomechanical coupling towards the ground state, we have designed, fabricated and characterized photonic crystal nanomembranes, at the crossroad of both topics. Here we demonstrate a number of nonlinear effects with these membranes. We first characterize the nonlinear behavior of a single mechanical mode and we demonstrate its nonlocal character by monitoring the subsequent actuation-related frequency shift of a different mode. We then proceed to study the underlying nonlinear dynamics, both by monitoring the phase-space trajectory of the free resonator and by characterizing the mechanical response in presence of a strong pump excitation. We observe in particular the frequency evolution during a ring-down oscillation decay, and the emergence of a phase conjugate mechanical response to a weaker probe actuation. Our results are crucial to understand the full nonlinear features of the PhC membranes, and possibly to look for nonlinear signatures of the quantum dynamics

    Definition of the stimulated emission threshold in high-β\beta nanoscale lasers through phase-space reconstruction

    Full text link
    Nanoscale lasers sustain few optical modes so that the fraction of spontaneous emission β\beta funnelled into the useful (lasing) mode is high (of the order of few 101^{-1}) and the threshold, which traditionally corresponds to an abrupt kink in the light in- light out curve, becomes ill-defined. We propose an alternative definition of the threshold, based on the dynamical response of the laser, which is valid even for β=1\beta=1 lasers. The laser dynamics is analyzed through a reconstruction of its phase-space trajectory for pulsed excitation. Crossing the threshold brings about a change in the shape of the trajectory and in the area contained in it. An unambiguous definition of the threshold in terms of this change is shown theoretically and illustrated experimentally in a photonic crystal laser

    Transient chirp in high speed photonic crystal quantum dots lasers with controlled spontaneous emission

    Full text link
    We report on a series of experiments on the dynamics of spontaneous emission controlled nanolasers. The laser cavity is a photonic crystal slab cavity, embedding self-assembled quantum dots as gain material. The implementation of cavity electrodynamics effects increases significantly the large signal modulation bandwidth, with measured modulation speeds of the order of 10 GHz while keeping an extinction ratio of 19 dB. A linear transient wavelength shift is reported, corresponding to a chirp of less than 100 pm for a 35-ps laser pulse. We observe that the chirp characteristics are independent of the repetition rate of the laser up to 10 GHz

    Exciton polaritons in two-dimensional photonic crystals

    Full text link
    Experimental evidence of strong coupling between excitons confined in a quantum well and the photonic modes of a two-dimensional dielectric lattice is reported. Both resonant scattering and photoluminescence spectra at low temperature show the anticrossing of the polariton branches, fingerprint of strong coupling regime. The experiments are successfully interpreted in terms of a quantum theory of exciton-photon coupling in the investigated structure. These results show that the polariton dispersion can be tailored by properly varying the photonic crystal lattice parameter, which opens the possibility to obtain the generation of entangled photon pairs through polariton stimulated scattering.Comment: 5 pages, 4 figure

    Integrated III-V Photonic Crystal - Si waveguide platform with tailored optomechanical coupling

    Get PDF
    Optomechanical systems, in which the vibrations of a mechanical resonator are coupled to an electromagnetic radiation, have permitted the investigation of a wealth of novel physical effects. To fully exploit these phenomena in realistic circuits and to achieve different functionalities on a single chip, the integration of optomechanical resonators is mandatory. Here, we propose a novel approach to heterogeneously integrate arrays of two-dimensional photonic crystal defect cavities on top of silicon-on-insulator waveguides. The optomechanical response of these devices is investigated and evidences an optomechanical coupling involving both dispersive and dissipative mechanisms. By controlling the optical coupling between the waveguide and the photonic crystal, we were able to vary and understand the relative strength of these couplings. This scalable platform allows for an unprecedented control on the optomechanical coupling mechanisms, with a potential benefit in cooling experiments, and for the development of multi-element optomechanical circuits in the framework of optomechanically-driven signal-processing applications

    2D photonic-crystal optomechanical nanoresonator

    Full text link
    We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8 % over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265 nm-thick membrane, is used to form a compact microcavity involving the suspended nano-membrane as end mirror. The resulting cavity has a waist size smaller than 10 μ\mum and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane
    corecore