236 research outputs found

    Toward predicting research proposal success

    Full text link
    © 2017, Akadémiai Kiadó, Budapest, Hungary. Citation analysis and discourse analysis of 369 R01 NIH proposals are used to discover possible predictors of proposal success. We focused on two issues: the Matthew effect in science—Merton’s claim that eminent scientists have an inherent advantage in the competition for funds—and quality of writing or clarity. Our results suggest that a clearly articulated proposal is more likely to be funded than a proposal with lower quality of discourse. We also find that proposal success is correlated with a high level of topical overlap between the proposal references and the applicant’s prior publications. Implications associated with the analysis of proposal data are discussed.https://deepblue.lib.umich.edu/bitstream/2027.42/150071/2/Predicting_Proposal_Success_rev0_hdr.pdfPublished versionDescription of Predicting_Proposal_Success_rev0_hdr.pdf : Accepted versio

    Knowledge Integration and Diffusion: Measures and Mapping of Diversity and Coherence

    Full text link
    I present a framework based on the concepts of diversity and coherence for the analysis of knowledge integration and diffusion. Visualisations that help understand insights gained are also introduced. The key novelty offered by this framework compared to previous approaches is the inclusion of cognitive distance (or proximity) between the categories that characterise the body of knowledge under study. I briefly discuss the different methods to map the cognitive dimension

    Design and update of a classification system: The UCSD map of science

    Get PDF
    Global maps of science can be used as a reference system to chart career trajectories, the location of emerging research frontiers, or the expertise profiles of institutes or nations. This paper details data preparation, analysis, and layout performed when designing and subsequently updating the UCSD map of science and classification system. The original classification and map use 7.2 million papers and their references from Elsevier's Scopus (about 15,000 source titles, 2001-2005) and Thomson Reuters' Web of Science (WoS) Science, Social Science, Arts & Humanities Citation Indexes (about 9,000 source titles, 2001-2004)-about 16,000 unique source titles. The updated map and classification adds six years (2005-2010) of WoS data and three years (2006-2008) from Scopus to the existing category structure-increasing the number of source titles to about 25,000. To our knowledge, this is the first time that a widely used map of science was updated. A comparison of the original 5-year and the new 10-year maps and classification system show (i) an increase in the total number of journals that can be mapped by 9,409 journals (social sciences had a 80% increase, humanities a 119% increase, medical (32%) and natural science (74%)), (ii) a simplification of the map by assigning all but five highly interdisciplinary journals to exactly one discipline, (iii) a more even distribution of journals over the 554 subdisciplines and 13 disciplines when calculating the coefficient of variation, and (iv) a better reflection of journal clusters when compared with paper-level citation data. When evaluating the map with a listing of desirable features for maps of science, the updated map is shown to have higher mapping accuracy, easier understandability as fewer journals are multiply classified, and higher usability for the generation of data overlays, among others

    Design and update of a classification system : the UCSD map of science

    Get PDF
    Global maps of science can be used as a reference system to chart career trajectories, the location of emerging research frontiers, or the expertise profiles of institutes or nations. This paper details data preparation, analysis, and layout performed when designing and subsequently updating the UCSD map of science and classification system. The original classification and map use 7.2 million papers and their references from Elsevier’s Scopus (about 15,000 source titles, 2001–2005) and Thomson Reuters’ Web of Science (WoS) Science, Social Science, Arts & Humanities Citation Indexes (about 9,000 source titles, 2001–2004)–about 16,000 unique source titles. The updated map and classification adds six years (2005–2010) of WoS data and three years (2006–2008) from Scopus to the existing category structure–increasing the number of source titles to about 25,000. To our knowledge, this is the first time that a widely used map of science was updated. A comparison of the original 5-year and the new 10-year maps and classification system show (i) an increase in the total number of journals that can be mapped by 9,409 journals (social sciences had a 80% increase, humanities a 119% increase, medical (32%) and natural science (74%)), (ii) a simplification of the map by assigning all but five highly interdisciplinary journals to exactly one discipline, (iii) a more even distribution of journals over the 554 subdisciplines and 13 disciplines when calculating the coefficient of variation, and (iv) a better reflection of journal clusters when compared with paper-level citation data. When evaluating the map with a listing of desirable features for maps of science, the updated map is shown to have higher mapping accuracy, easier understandability as fewer journals are multiply classified, and higher usability for the generation of data overlays, among others
    corecore