
May 1998

APPLICATION PROGRAMMING INTERFACE DOCUMENT FOR THE
MODERNIZED TRANSIENT REACT OR ANALYSIS CODE (TRAC-M)

J. Mahaffy
Pennsylvania State University

B. E. Boyack and R. G.
Los Alamos National Laborat

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Govcrnmeot nor any agency
thenof. nor any of their employees, makes any warranty. express or implied, or
assumes any legal liabiiity or responsibility for tbe accuracy, cornpietencu. or use-
fulness of any information, apparatus, product. or process disclosed, or rc#rcscnu
that its usc would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, pnxxss, or service by trade name, trademark manufac-
turer. or otherwise does not necessarily coastizute or imply its endorsement. ncom-
mendation, or favoring by the United States Government or any agency thereof.
The vim and opinions of autbon expressed herein do not n d l y state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

APPLICATION PROGRAMMING INTERFACE DOCUMENT FOR THE
MODERNIZED TRANSIENT REACTOR ANALYSIS CODE (TRAC-M)

J. Mahaffy
Pennsylvania State University

and

B. E. Boyack and R. G. Steinke
Nuclear Systems Design and Analysis

Los Alamos National Laboratory
Los Alamos, New Mexico

ABSTRACT

The objective of this document is to ease the task of adding new system
components to the Transient Reactor Analysis Code (TRAC) or altering old
ones. Sufficient information is provided to permit replacement or
modification of physical models and correlations. Within TRAC,
information is passed at two levels. At the upper level, information is
passed by system-wide and component-specific data modules at and
above the level of "component" subroutines. At the lower level,
information is passed through a combination of module-based data
structures and argument lists. This document describes the basic
mechanics involved in the flow of information within the code. The
discussion of interfaces in the body of this document has been kept to a
general level to highlight key considerations. The appendices cover
instructions for obtaining a detailed list of variables used to communicate
in each subprogram, definitions and locations of key variables, and
proposed improvements to intercomponent interfaces that are not
available in the first level of code modernization.

I. INTRODUCTION

The objective of this document is to ease the task of adding new system components to
the Transient Reactor Analysis Code (TRAC) or altering old ones. In addition, sufficient
information is provided to permit replacement or modification of physical models and
correlations. The description of interfaces associated with system components requires
some repetition of information provided in the Software Design Information Document
(SDID) for TRAC-M data structured and in the Code Architecture and Computational
Flow document to be prepared at the completion of the database restructuring effort.
However, only the general features of the data structure and code architecture will be

Application Programming Interface Document
Rev. 0.4

Page 1

described here. These two documents also should be read carefully before attempting to
create or modify a TRAC system component.

Within TRAC, information is passed via system-wide and component-specific data
modules at and above the level of "component" subroutines, such as Rpipe, Repipe,
Ipipe, Pipel, Pipe2, Pipe3, Dpipe, Xtvpipe and Wpipe. Examples of system level data
modules are GlobalDatM, GlobalPntM, and GlobalDimM. Examples of component-
specific data modules are PipePtrM, PipeVltM, PlenPtrM, and PlenVltM. Below these
subroutines, information is passed through a combination of module-based data
structures and argument lists. One goal of the initial TRAC modernization was to
minimize changes to subprogram argument lists. As a result, the argument lists and
calling trees below the level of the component routines are very similar to those in
TRAC-PF1 /MOD2. The argument lists of the component subroutines themselves have
been eliminated to avoid conflicts with the revised data structure.

The basic logic behind information passing in TRAC has been to pass state variable
arrays for the fluid or structure material and indices bounding array sections through
argument lists. Scalar-state variables passing boundary information (particularly at the
Tee internal junction) were passed through special modules. Variables that operate as
constants in state equations, correlations, etc., also have been passed through common
blocks (now modules). Unfortunately, this logic was not followed consistently over 20
years of development, and exceptions exist. No consistent pattern has developed for
scalar flags and important array indices. These can be found passing through both
argument lists and modules.

The most complex and frequently modified interfaces exist in the component-related
subroutines. Component subroutines are provided for each of nine key stages of TRAC
execution:

1.

2.

3.

4.

5.

6.

7.

8.

9.

Input of initial component data (e.g., Rpipe);

Input of restart information for a component (e.g., Repipe);

Initialization of component-dependent variables (e.g., Ipipe);

Stabilizer momentum equation solution, evaluation of various old-time
quantities, and other bookkeeping at the beginning of each timestep (e.g., Pipel);

Iterative solution of basic flow equations for each timestep (e.g., Pipe2);

Solution of stabilizer mass and energy equations, solution of the conduction
equations, and other computations to complete each timestep (e.g., Pipe3);

Output of data to the restart dump file (e.g., Dpipe);

Output of data to the XTV graphics files (e.g., Xtvpipe);

Output of data to the ASCII detailed edit file (e.g., Wpipe).

Application Programming Interface Document
Rev. 0.4

Page 2

Similar component subroutines for each of the nine key stages of TRAC execution also
exist for the other TRAC components, e.g., Tee, Fill, Break, Pump, Prizer, Valve, and
Plenum.

A schematic illustrating the TRAC’s top-level program flow, with emphasis on the
computational solution of the flow equations, is presented in Fig. 1. The program
construct is shown for advancing the solution one timestep, beginning with subroutine
Trans, which begins with the stabilizer step for the equation of motion (subroutine Prep),
basic equations solution for all equations (subroutine Outer), and stabilizer step for mass
and energy equations (subroutine Post).

Within a given timestep, subroutine Prep calls all component subroutines twice.
Subroutine Outer calls all component subroutines twice, and subroutine Post calls all
component subroutines three times. In each case (Prep, Outer, and Post), two passes
provide the setup and solution of a set of equations. However, the two passes in Outer
are contained within a Newton iteration loop. Post adds a third pass to calculate some
final end of timestep values for mass flows and mean cell densities. The outer loops in
Prep, Outer, and Post, which take more than one pass through all components, are
indexed by the variable ”ibks.” This variable takes on values of one and two in Prep,
values of zero and one in Outer, and one, two, and three in Post. Component
subroutines in these three stages must use the module OneDDat to obtain the value of
ibks to follow the flow of the calculation properly.

Each of the subroutines shown in Fig. 1, Init, Steady, Trans, Prep, Outer, and Post, access
lower-level subroutines. More detailed calling trees are presented in App. A, beginning
with each of these subroutines, as well as the calling tree for the driver routine, TRAC
(Fig. A.1).

The next five sections cover some of the basic mechanics involved in the flow of
information within the code. A discussion is provided for one-dimensional (1D)
component subroutines in Sec. 11, for the three-dimensional (3D) Vessels in Sec. 111, for
the Plenum component in Sec. W, and for the heat structures in Sec. V. The basic pattern
for information flow seen in Pipe is repeated in all basic components and should be
understood before trying to work with the more complicated components. Section VI
covers noncomponent models, such as the control-system, constrained steady-state,
hydraulic-path steady-state initialization, and radiation models. The discussion of
interfaces in the body of this document has been kept at a general level to highlight key
considerations. For instructions on obtaining a detailed list of variables used to
communicate in each subprogram, consult App. B. For definitions and locations of key
variables, consult App. C. Appendix D covers proposed improvements to intercom-
ponent interfaces that are not available in the first level of code modernization.

The general code architecture provides the ability to connect a wide range of component
and physical models to the existing code. However, many such connections are not
desirable or should be approached with extreme caution. Section VII presents known
limitations on the range of useful connections.

Application Programming Interface Document
Rev. 0.4

Page 3

Function: h4am Program

.
POST
Function: Stabilizer Step for mass and energy
equations (post pass)

1st Setup stabilizer equations and
pass perform forward elimination

2nd Back substitution to determine
pass remaining values for density and

density-energy product

Calculate mean cell densities and 3rd
Pass cell-face mass flow rates

<

I I Function: Initialization

Function: Calculate steady-
state solution

TRANS

Function Advance solution
one time step. Control
timestep and dump edits

Note: STEADY has a similar logic to
that detailed for the TRANS routine

1
See Appendix A for PREP
subprogram calling trees PREP PREPlD

Function: Stabilizer step for the equation of

perform forward elimination

Back substitution to determine
remaining intermediate velocities (a
components and all cells)

OUTER -b OUTlD
Function: Basic equations solution for
all equations - Sets up calculation of new-time Z & velocity coefficient as linea*
C function of new-time pressures

Setup basic equations and
perform forward elimination

Back substitution to determine
all new-time pressures, void
fractions and temperatures

Fig. 1. TRAC computational flow.

Application Programming Interface Document
Rev. 0.4

See Appendix A for OUTER
subprogram calling trees

See Appendix A for POST
subprogram calling trees

Page 4

11. ONE-DIMENSIONAL COMPONENTS

The interface to a 1D component follows one basic pattern that is best seen in Pipe, with
minor variations for boundary conditions and Tee-type components. Tees involve
duplication of Pipe coding and special internal generation of boundary conditions at the
internal Tee junction. Boundary conditions (Fill and Break) generate junction boundary
information on the same cycles as Pipe, but perform relatively few other operations.

11.1. Pipe

The data interfaces for the Pipe component are described here for each of the nine
computational stages outlined in Sec. I. The pattern described here for the information
passing is followed very closely in the other 1D components and, as will be seen in later
sections, is followed to a large degree by the Plenum and Vessel.

11.1.1. Basic Input for Pipe
The basic calling tree associated with input is summarized in Fig. A.2.a of App. A.
Throughout this document, the Pipe component is used as the primary vehicle for
discussing the lower-level subroutines in the calling tree. Input of initial Pipe data is
driven by Rpipe, which is called by the subroutine Rdcomp. Creation of a new
component similar to Pipe would require the addition of a Call in Rdcomp to process
that component’s input. The component’s type (Pipe), component number, ID number,
and descriptive title are obtained in subroutine Input (Fig. A.1) before it calls Rdcomp.
This information is passed to Rpipe via the module for the fixed length table (FltM) as
the variables type, num, id, and title. Rpipe obtains values of other scalar variables for
the component from the ASCII input file, using the subroutines Readr and Readi
(Fig.A.2.b). These two subroutines also echo this input to the detailed output file
(trcout). Readr and Readi should be used for input of any scalar data for a component to
maintain a consistent interface with the input file and its reflection to the output.

Rpipe calls the subroutine Rcomp to obtain array information on the geometry and
initial state of the fluid for all cells (dx, vol, fa, fric, fric, gravp, elev, hd, hdht, nff, lccfl,
alpn, vln, vvn, tln, tvn, pn, and pan, and where appropriate, wfmfl, wfmfv, qppp, matid,
twn, concn, and sn). Rcomp in turn uses the subroutine Loadn to bring array data from
the input and the subroutines Warray and Wiarn, respectively, to echo real and integer
array values to the output. Loadn, Warray, and Wiarn also are used directly by Rpipe to
obtain additional array information. These subroutines (Rcomp, Loadn, Warray, and
Wiarn) are the standard interfaces for reading and echoing array values from the input
file and should be used for this purpose in any new component.

When input errors are detected in subroutines at or below subroutine Input, the input
line is echoed to the standard detailed ASCII output file and a warning message is
printed to that file, the message file, and the terminal. The error message is produced by
a call to the subroutine Error, with the first argument set to ”2” to indicate a warning
rather than a fatal message. By convention, the message (passed as the second
argument) begins with the name of the subroutine processing the input line, bounded by

Application Programming Interface Document
Rev. 0.4

Page 5

single asterisks (e.g., “*rpipe* inconsistent init & table power”). When additional
diagnostic information is necessary, including values of variables, direct Write
statements are necessary. Pairing of this information to the messages from Error requires
three writes: one to the terminal (unit number in variable ‘Wy” from module Io); one to
the standard detailed ASCII output (unit number in variable ”iout” from module Io);
and one to the message file (unit number in variable ”imout” from module Io).

Termination of input processix is flagged at two levels of severity. The lowest-level
input routines (Loadn, Readi, Lzadr, and Nxtcmp) set the value of variable ”ioerr”
(located in the module Io) to one when an input error is detected. Subroutine Input
checks the value of “ioerr” after completion of basic component input (call to Rdcomp)
and terminates if it is not zero. The presumption is that input errors are severe enough
that it is not worth any processing of the restart file or Ca7iding of flow network
connectivity. Higher-level routines (Input, Rpipe, Rtee, etc.) Bag problems for later
termination by setting the variable “jflag” (contained in module Badinput) to one. One
exception is subroutine Rcomp, which uses a variable ’jflagc” (contained in the commc-m
block concck) for the same purpose. The class of errors detected at these levels is
presumed to be localized enough to make checking of flow network connectivity
profitable. Input will terminate execution before returning if jflag or jflagc is not equal
to zero.

Rpipe has one other important but subtle interface that must be replicated in new
components. By supplying values to the ”jun” array (and incrementing jun’s current
index ”jptr”)/ Rpipe supplies information to the system necessary to establish the order
of the calculation and the structure of the network solution matrix. The ”jun” array is
scanned by Srtlp (Fig. A.l) after all input is processed, and the order of component
processing is placed in the array ”iorder”. Srtlp also returns other significant information
necessary for the details of the network solution procedure (see App. D for details). The
lower-level calling trees for other TRAC components are shown in Figs. A.2.b through
A.2.d.

11.1.2. Restart Input for Pipe
The basic calling tree associated with restart input is summarized in Fig. A.3 of App. A.
Input of restart information for a Pipe component is driven by the subroutine Repipe,
which is called by Rdrest. Creation of a new component similar to Pipe would require
the addition of Call i r k kdrest to process that component’s input. Restart input begins
with communication OP the lists of all system components (iorder) and all components in
the ASCII input deck (nbr) to Rdrest via the system-wide data structure (Fig. A.l). The
Pipe’s fixed length table is read from the restart file by a call from Rdrest to rstFLT. If the
Pipe’s component number is included in the current list of system components but not in
the list of component’s read from the ASCII input file, then Repipe is called to complete
restart input.

Repipe uses the subroutine Rstvlt to read the Pipe variable-length table from the restart
file. It then echoes values of the variable-length table to the standard detailed output file
using subroutine Reecho. Standard arrays required for restart of 1D flow (dx, vol, fa, fric,

Application Programming Interface Document
Rev. 0.4

Page 6

grav, hd, nff, lccfl, wa, qppp, matid, alpo, alpn, vln, tln, pn, pan, wfmfl, wfmfv, aran, twn,
tvn, a h , chtin, wn, arm, arln, arevn, areln, rmvm, rvmf, vmn, bitn, hiv, hil, hig, higo,
cifn, rhs, wt , vlt, g a m , elev, chtan, alven, twan, twen, tcen, and, when appropriate, sn,
concn, and qppc) are acquired by a call to Recomp. Those arrays that would normally
appear in an echo of input are printed by a call to Wrcomp, which in turn uses the
standard low-level routines Warray and Wiarn to write array values to the standard
detailed output file. Actual input of values or arrays of values in Repipe or Recomp is
accomplished with the subroutine Bfin rather than a direct FORTRAN Read statement
because TRAC contains its own buffered 1/0 routines (Bfaloc, Bfin, and Bfout) for
output to binary files. These buffered I/O subroutines should be used with any new
component, as should standard routines to echo values to the standard detailed output.

As with Rpipe, values for the "jun" array must be loaded from Repipe to provide
information on the pipe's location in the flow network.

The restart and dump need not be the direct responsibility of the component's
programmer. App. D contains a proposal for "system services" that would provide for
these functions with minimal information from the component's programmer.

II.1.3. Initialization of Pipe-Dependent Variables
The basic calling tree associated with initialization is summarized in Fig. A.4 of App. A.
Initialization of Pipe-dependent data is driven by the subroutine Ipipe, which is called
by Icomp. Any nev,'component would require the creation of an initialization routine
and the addition of an appropriate call to Icomp.

Icomp sets the values of two arrays that provide information to component subroutines.
The first, "jseq", is simply a list of all junction numbers used in the current system
model. It is used only during the initialization phase, providing a convention to
components for storage and use of junction-specific information such as the boundary
(bd) array. The second array filled by Icomp (vsi) contains sign convention information
for component junctions, aligned one for one with the junction numbers in "jseq". If an
element of "vsi" is +1.0, then the velocities in the two adjacent components have the
same sign convention (flow at +2.0 m/s at that junction in one component is also +2.0
m/s at that junction in the other component). If an element of vsi is -1.0, then the
velocities in the two adjacent components have the opposite sign conventions (flow at
+2.0 m/s at that junction in one component is interpreted as -2.0 m/s at that junction in
the other component). This array is used throughout the calculation to translate velocity
and mass-flow boundary information between components.

Calls to component-specific initialization subroutines are contained in a DO loop that
will cycle either two times for normal execution or three times if steady-state (stdyst)
options 3 or 4 are selected to perform an initial estimate of steady-state temperature and
velocity distributions. The status of the loop counter is stored in the variable iinl (named
common block elvkfj' and can take on the values of 0, 1, or 2. However, component-
specific subroutines (e.g., Ipipe) are called only when iinl has values of 1 or 2. The basic
work of component initialization takes place when iinl=l. When iinl=2, Ipipe and

Application Programming Interface Document
Rev. 0.4

Page 7

similar routines check the consistency of cell edge quantities at the junction, compute the
elevation changes across components, and convert the loss coefficients to TRAC's
specific form of friction factors. All components must follow this pattern of processing
during the initialization step for the boundary checking process to function.

Ipipe begins by obtaining values for two communications variables contained in the
variable-length table (module PipeVlt). Variables "jsl" and "js2" contain the index in
junction-related arrays (bd, vsi) for the left and right junctions of the pipe. They are used
throughout the calculation to index the appropriate elements of the boundary (bd) and
velocity sign (vsi) arrays for the pipe end junctions. Values are determined for "jsl" and
"js2" with the function Jfind.

Ipipe next calls to subroutine Junsol twice (one for each junction) to set isollb and isslrb
(in module PipeVlt), indicating the nature of the velocity calculation at the junction
value of 0 from one of these variables indicates that the velocity is fixed by a EL:
boundary condition. A value of 2 indicates that a Break is across the junction and that no
other active component contributes to the momentum equation. A value of 1 indicates
that another active component (Pipe, Tee, Vessel, etc.) is on the other side of the junction
but that the current component (this Pipe': performs the evaluation of the momentum
equation. A value of -1 indicates that another component evaluates the momentum
equation, and that component appears before the current one in the order of
computation.

The same calls to Junsol initialize the network index array iou. If the junction being
processed is an active participant in the network solution (isollb or isolrb is +1 or -1),
then the input value for that junction nurnber is placed in the appropriate location in iou.
A later call to Setnet from Icomp converts these junction numbers to unique indices for
the network junction variables associated with the component junction.

Ipipe, like all other existing 1D component initialization routines, uses a call to the
subroutine Iprop to initialize dependent fluid-state variables (density, internal energy,,
etc.), physical properties such as viscosity, and mixture properties such as the mean
density. The actual computation of these properties is done or driven by the subroutines
Thermo, Fprop, and Mixprp, respectively. Information is communicated between Iprop
and these subroutines via their argument lists. Iprop communicates the information
directly to the comp -derived-type data structure. Iprop should be used whenever

nts. If a replacement is constructed for a special component,
derstand and mimic the use of the variable "irest" (from

modt;.. -2 Flt) in Iprop. Many properties (particularly macroscopic densities and energies)
must De generated from more basic variables when a component is first input. However,
when irest=l, the component data are coming from a restart file, bringing values for
many of these variables from the restart file that must not be overwritten during
initialization.

Initialization is the first stage at which boundary information is generated and passed.
Ipipe uses the standard 1D boundary subroutine Setbd, which accepts arguments

Application Programming Interface Document
Rev. 0.4

Page 8

necessary for setting the boundary conditions at the two end cells of the 1D section.
Setbd calls J1D for each of the ends to actually set the elements of the ”bd”-derived-type
array.

The boundary (bd) array is a derived type with one element for each component junction
in the system. When calculations begin for a given component, the information in the
boundary array for each of its junctions represents conditions in the adjacent component.
When a component completes its calculations, its end conditions are loaded over this
boundary information so that calculations for the adjacent components will have correct
boundary information available. The components of the derived type contain all of the
geometry and fluid state information necessary for one component to model flow across
the junction from another using a first-order-difference method. For the ith junction, the
derived type is as follows:

bd(i)%alp
bd(i)%alpn
bd(i)%alpo
bd(i)%ara
bd(i)%aran
bd(i)%aratio
bd(i)%arel
bd(i)%areln
bd(i)%arev
bd(i)%arevn
bd(i)%arl
bd(i)%arln
bd(i)%arv
bd(i)%arvn
bd(i)%bit
bd(i)%bitn
bd(i)%cifiQ
bd(i)%concn
bd(i)%dfldp
bd(i)%dfvdp
bd(i)%dx
bd(i)%eln
bd(i)%evn
bd(i)%fa
bd(i)% fa
bd(i)%gamn
bd(i)%grav2
bd(i)%hd
bd(i)%num
bd(i)%p

- adjacent cell, old void fraction
- adjacent cell, new void fraction
- adjacent cell ,void fraction from step before old time
- adjacent cell, old noncondensable macroscopic gas density
- adjacent cell, new noncondensable macroscopic gas density
- ratio of total flow area in this direction to this junction area
- adjacent cell, old macroscopic liquid internal energy per volume
- adjacent cell, new macroscopic liquid internal energy per volume
- adjacent cell, old macroscopic gas internal energy per volume
- adjacent cell, new macroscopic gas internal energy per volume
- adjacent cell, old macroscopic liquid density
- adjacent cell, new macroscopic liquid density
- adjacent cell, old macroscopic gas density
- adjacent cell, new macroscopic gas density
- adjacent cell, old bit flags
- adjacent cell, new bit flags
- new time interfacial drag coefficient, one face past the junction
- adjacent cell, new solute concentration
-junction derivative of liquid velocity with pressure
-junction derivative of gas velocity with pressure
- adjacent cell length
- adjacent cell liquid, specific internal energy
- adjacent cell gas, specific internal energy
- flow area one face past the junction
-junction flow area
- adjacent cell, new mass-transfer term
- gravity vector, one face past the junction
- junction hydraulic diameter
- adjacent component number
- adjacent cell, old pressure

Application Programming Interface Document
Rev. 0.4

Page 9

bd(i)%pa
bd(i)%pn
bd(i)%roa
bd(i)%rol
bd(i)%roln
bd(i)%rom
bd(i)%rov
bd(i)%rovn
bd(i)%sig
bd(i)%sxl
bd(i)%sxv
bd(i)%tln
bd(i)?htmsl
bd(i)%tmsv
bd(i)%otvn
bd(i)%type - adjacent component type
bd(i)%visl
bd(i)%visv
bd(i)%vl -junction, old liquid velocity
bd(i)%vln -junction, new liquid velocity
bd(i)%vln2
bd(i)%vlt
bd(i)%vlt2
bd(i)%vlto
bd(i)o/ovlto2
bd(i)%vlvol
bd(i)%vol - adjacent cell volume
bd(i)%vsi
bd(i)%w -junction, old gas velocity
bd(i)%wn -junction, new gas velocity
bd(i)%wn=! - new time gas velocity, one face past the junction
bd(i)%wt -junction, new gas stabilizer velocity
bd(i)%W - new stabilizer gas velocity, one face past the junction
bd(i)%wto - junction, old gas stabilizer velocity
bd(i)%wto2 - old stabilizer gas velocity, one face past the junction
bd(i)%wvol - adjacent cell, center gas velocity
bd(i)%wfhfl -junction, liquid wall friction input scale factor
bd(i)%wfmfv -junction, gas wall friction input scale factor
bd(i)%xsm - adjacent cell, center x position
bd(i)%ysm - adjacent cell, center y position
bd(i)%zsm - adjacent cell, center z position

- adjacent cell, old noncondensable partial pressure
- adjacent cell, new pressure
- adjacent cell, old noncondensable gas density
- adjacent cell, old liquid density
- adjacent cell, new liquid density
- adjacent cell, old mean density
- adjacent cell, old gas density
- adjacent cell, new gas density
- adjacent cell, old surface tension
- coefficient in liquid momentum source from adjacent Tee connection
- coefficient in gas momentum source fiom adjacent Tee connection
- adjacent cell, new liquid temperature
- constant in liquid momentum source from adjacent Tee connection
- constant in gas momentum source from adjacent Tee connection
- adjacent cell, new gas temperature

- adjacent cell, old liquid viscosity
- adjacent cell, old gas viscosity

- new time liquid velocity, one face past the junction
- junction, new liquid stabilizer velocity
- new stabilizer liquid velocity, one face past the junction
- junction, old liquid stabilizer velocity
- old stabilizer liquid velocity, one face past the junction
- adjacent cell, center liquid velocity

- junction velocity, sign convention translation

Application Programming Interface Document
Rev. 0.4

Page 10

Loading this array provides the single most important information interface between
components. Unfortunately, the cyclic dual use of each element in the array places strict
requirements on the order of processing of components, thus restricting options
available for parallel processing. Appendix D presents a future option to generate
boundary information in a way that is consistent with the needs for parallel processing
and that is more transparent when creating or modifymg components.

11.1.4. Solution Prepass
This stage of the calculation includes the stabilizer momentum equation solution and
evaluation of various old-time quantities and other bookkeeping necessary at the
beginning of each timestep. The basic calling tree associated with the prepass is
summarized in Fig. A.5.a of App. A. Again, the Pipe component is used to illustrate the
lower-level calling tree. The Pipe prepass is driven by the subroutine Pipel, which is
called by PreplD. Creating a new component similar to Pipe would require the addition
of a Call in PreplD to handle the prepass for that component.

Subroutine Prep loops over most component subroutines (via PreplD and Prep3D)
twice, communicating the pass number through the variable "ibks" in module
OneDDat. Each pass over components begins with a double loop over all 1D system
flow loops and all 1D components (including plenums) within each flow loop. The loop
index "il" used in PreplD is needed in lower-level routines to select network-variable
indices and network coefficient arrays and is communicated through module OneDDat.
*In this stage, the network index array is used to reference two variables per network
junction: the junction stabilizer liquid and vapor velocities. Variable coefficients for the
network equations are passed through "aol" and "aov" and constants through the arrays
"drl" and "drv", all contained in the module named "Network". Network coefficients
linking 1D velocities to Vessel stabilizer velocities are stored in the "rclvss" and "rcwss".

The first pass through 1D components results in a call to Preper from Pipel (Fig. A.5.b).
Preper communicates directly with the component-derived-type data structure and
moves most information to lower levels via argument lists. Unfortunately, it currently
mixes four types of tasks in its calls to other subprograms. The first of these is general
bookkeeping, including calculations of some Vessel junction matrix coefficients and a
call to Volv to compute cell-centered velocities. The second task is setup and partial
solution for the stabilizer momentum equations, which are delegated to Femom. The
third task is calculation of basic physical properties, such as wall friction coefficients (call
to Fwall), interfacial drag coefficients (Femom), wall metal properties (call to Mprop),
and wall heat-transfer coefficients (HTCs) (call to Htpipe). Modular considerations
suggest that at least the task of computing basic physical properties should be isolated in
a separate subroutine, which is also called at the component level (e.g., from Pipel). The
fourth task is the evaluation of a component-specific model. If the component type is a
pump (Fig. A.5.c), then the subroutine Pumpsr is called to provide pump-momentum
source terms. Preper is a transition routine from the standpoint of data communication.
It uses the system-wide and component-specific data structures, but passes on
information on the state of the fluid through the argument lists of lower-level
subroutines.

Application Programming Interface Document
Rev. 0.4

Page 11

Boundary information is communicated via Setbd (called from Pipel, Fig. A.5.b in App.
A) during the first pass through all components (ibks=l). However, the second pass
through all components (ibks=2) performs only a back substitution on the stabilizer
momentum equations. As a result, a standard update to the boundary array is not
performed. Only elernents associated with the stabilizer velocities are updated directly
in subroutine Bkmon This includes the elements associated with the Tee momentum
source terms (sxl, sxv, tmsl, and : which are just set to zero in Pipe.

In addition to the use of argument - ss and the component-derived-type data structure,
two other important interfaces arp found in subroutine Preper (called by Pipel). The
simplest is the use of the variable- -r100 and imlOOx (module GlobalDat) to signal if a
timestep backup has occurred (imi00 or imlOOx = -100). In the event of a backup,
calculations of cell-center velocities are not repeated. Another important communication
path exists to Femom and other flow equation subroutines. These are in principle
isolated from the component ar*d system data structures. Indices for the network arrays
are communicated to these low-level subroutines through the variables "iOl", "iOZ", and
"i03", and the velocity sign conventions at the junctions are communicated via "s0l"and
"~02". All are contained in the module OneDDat. The sign conventions associated with
"sol" and "SOY are related, but not identical to those in "vsi". Within a component
responsible for the evaluation of a network junction equation, the value of this sign
convention at that junction is always +l. If the component does not evaluate the junction
equation at a given junction, then the sign convention contained in "sol" or "s02" (as
appropriate) matches that in "vsi" for that junction. A variable "s03" is not needed
because the sign convention at the junction between the primary and secondary side of a
Tee is known to be +1. The lower-level calling trees for other TRAC components are
shown in Figs. A.5.d through A.5.1.

11.1.5. Solution Outer Iteration
This stage is devoted to the iterative solution of basic flow equations for each timestep.
The basic calling tree associated with this iteration is summarized in Fig. A.6.a of App. A.
The subroutine Hout has primary control of the iterations, but most of the control for a
given iteration is contained in subroutine Outer (called by Hout). The Pipe contribution
to the outer iteration is driven by the subroutine PipeZ, which is called by OutlD.
Creating a new component similar to Pipe would require the addition of a Call in OutlD
to handle the outer iteration for that component.

Subroutine Outer loops over most component subroutines (no action is taken on heat
structures) twice, communicating the pass number through the variable "ibks" in
module OneDDat. OutlD contains DO loops over all 1D system flow loops and all 1D
components (including plenums) within each flow loop. The loop index "il" used in
OutlD is needed in lower-level routines to select network-variable indices and network
coefficient arrays and is communicated through module OneDDat. In this stage, the
network index array is used to reference one variable per network junction, which is the
cell-centered difference across the junction of the iterative change in pressure. Variable
coefficients for the networl nquations are passed through the array "aou" and constants

Application Programming Interface Document
Rev. 0.4

Page 12

through the array "dvb", both contained in the module named "Network". Network
coefficients linking 1D junction variables to Vessel new-time pressures are stored the
system-wide array in the array "rcvss". Communication of these coefficients is
particularly important because Outer completes the computation of the network matrix
diagonal, in addition to solving for network variables as functions of Vessel new-time
pressures.

Communicating boundary information follows a different path in the outer iteration
than in the prepass. The boundary array is set with direct calls to J1D from subroutine
Inner, as called by Pipe2 (Fig. A.6.b). Boundary array information also is used in Inner to
set values of the new junction velocities (and derivatives with respect to pressure) in the
component if they have already been calculated in another component during this stage.

Inner does little besides boundary array operations, calling TflD to manage most of the
work of setting up and solving the basic equations. TflD follows the pattern of Preper in
setting network array indices and sign conventions (iO1, i02, i03, sol, and s02). It also
contains the unfortunate mixture of calls to physical correlations (e.g., the call to Htif,
which calculates the interfacial HTCs), with calls to numerical solution subroutines
(TflDsl and TflDs, to set up and partially solve the basic flow equations). TflD is a
transition routine from the standpoint of data communication. It uses the system-wide
and component-specific data structures, but passes on information on the state of the
fluid through the argument lists of lower-level subroutines.

One other communicating variable worth noting is "oitno" (named common istat). Its
base use is to hold the iteration count, generated in Hout and used to trigger special first-
iteration operations in low-level routines such as TflD. The count is also used by
Newdlt as a contribution to the calculation of timestep size. In the event of an iteration
failure, it takes on a second function as a flag to the postpass containing a value of 100.

One flaw in the current code structure and information flow in the outer iteration stage is
that equation setup, equation solution, and evaluation of physical models are driven at a
relatively low level (TflD). A similar situation exists in the prepass with the mixing of
equation setup and evaluation of interfacial drag coefficients in subroutine Femom. One
key future set of tasks will be to separate these types of calculations at a much higher
level (see App. D). The calling tree from Outer to Out3D and lower levels are provided
in Fig.A.6.c. Additional lower-level calling trees are provided in Figs. A.6.d through
A.6.i.

11.1.6. Solution Postpass
The basic calling tree associated with the postpass is summarized in Fig. A.7.a of App. A.
The postpass is driven by subroutine Post and loops through all components three times.
As with Prep and Outer, the index for this loop is the variable "ibks" in module
OneDDat. This process performs (1) the solution of stabilizer mass and energy equations
when ibks = 1 and 2; (2) the solution of the conduction equations and evaluation of fluid
properties (viscosity, specific heat, conductivity surface tension, and heat of
vaporization) when ibks = 2 ; and (3) other minor computations necessary to complete

Application Programming Interface Document
Rev. 0.4

Page 13

each tirnestep (mass flows and mean velocity) when ibks = 3. The Pipe contribution to
the outer iteration is driven by the subroutine Pipe3, which is called by Post. In addition
to driving the most component routines directly, Post calls Post3D to drive postpass
activities associated with Vessel components. It also plays a significant role in
restructuring the junction mass and energy equations in the single-phase limit and sets
the diagonal values of the network matrices. Network matrix information and
associated right-handside arrays are passed from most lower-level routines via the
module named “Network” directly to linear system Solvers (Sgefat and Sgeslt) via their
argument lists.

At the component level (Pipe3), boundary information is passed with the same
mechanism as in the prepass. Subroutine Setbd is called to set both left- and right-
junction boundary conditions, which in turn uses J1D to set individual values at a given
junction (Fig. A.7.b).

Solving the stabilizer momentum equations is driven by a call to Constb. Only junction
information and bounding indices for arrays are passed to Constb from Pipel via the
argument list. Constb accesses most necessary information via the system-wide and
component data structures and passes this to lower-level subroutines via their argument
lists. As with Preper and Inner, Constb must generate network junction indices and sign
coefficients (iOl, sol, etc.) for the lower-level subroutines (passed through OneDDat).
Constb calls Stbme to set up and partially solve the stabilizer equations within the
component, passing all information on the state of the fluid through %e argument list.

Pipel calls Poster (Fig. A.7.b) to handle the back-substitution portion of the stabilizer
equation solution, along with several other tasks. This approach is in many respects
analogous to the approach in Preper, sharing the problem of combining the evaluation of
physical properties (call to Fprop) with bookkeeping and the solution of flow equations
(call to Bksstb). As with that routine, Pipel should be broken eventually into more
flexible modules. Pipel uses the module OneDDat as a communications path to pass
network matrix indices and sign conventions (iO1, sol, etc.) to Bksstb and, as with Preper
and Inner, is a transition subroutine from the standpoint of communications. Pipel has
access to the system-wide and component-specific data structures and passes most of
this information to lower-level subroutines through their argument lists.

Post, Pipe3, and Poster receive information on the success of the iterative solution
through the variable “oitno” in the named common ”istat”. On an iteration failure, Post
sets the variable ”ibks” to two, skipping the equation solution steps. Pipe3 skips a table
evaluation for heat sources. On a backup, Poster drives the restoration of all new-time
variables to their original old-time values, which are needed to restart the iteration;
however, most other tasks in Poster are suppressed. Additional lower-level calling trees
are provided in Figs. A.7.c-g.

11.1.7. Restart Dump for Pipe
The basic calling tree associated with the restart dump is summarized
App.A. The restart process is driven by Dmpit, which uses Bfout to

in Fig. A.8 of
write general

Page 14 Application Programming Interface Document
Rev. 0.4

variables, calls Rdflt (driver for Bfin calls) to obtain component fixed-length tables, and
writes component-specific data with subroutines such as Dpipe. The vast majority of
communication throughout the chain of calls is via modules associated with system-
wide and component-specific data structures. Switching from modules to argument lists
as the means of communication occurs only at the calls to Bfout.

Subroutine Dpipe is very brief, using Bfout directly to write Pipe-specific arrays and
calling Dcomp to dump information generic to 1D components. Dcomp obtains the
variable-length table using the subroutine Rstvlt and drives the output of both the fixed-
and variable-length tables with subroutines Dmpflt and Dmpvlt, respectively (both use
Bfout for actual output). It then issues a series of calls to Bfout to write the array data
general to all 1D components.

From the standpoint of the restart data interface, it is important to remember that all data
are routed to the restart dump file via the subroutine Bfout. The structure of the file itself
can be deduced fairly quickly by following the string of Bfout calls under Dmpit.
However, because of the potential importance of this interface to later separation of
ASCII input processing into a separate program, a full description of the dump file is
provided in App. E.

11.1.8. Output of Graphics Data
Names of subroutines initializing and writing graphics information begin with the
letters “xtv”. However, this does not mean that the output is useful only to the graplBcs
postprocessor named “XTV”. This key program interface is well indexed and contains
all information necessary to extract data for other data postprocessing, including
translation for use by other graphics packages. Although the raw data are written in
binary format, the necessary index information is written to a separate ASCII file that is
relatively easy to interpret. This section contains the information necessary to use this
index information for reading the binary graphics data.

The graphics output is initialized with a call from Init to Xtvinit (Fig. AJ), which sets the
descriptive names of all array variables to be written on the binary graphics file (xtvgr.b).
Initialization continues with a call to the Xtvdr, using an argument of zero [Call
xtvdr(0)l. This value of the dummy argument ”xmode” is propagated to lower-level
subroutines through argument lists and triggers a mode that writes time-independent
component information and index information about time-dependent variables written
to “xtvgr.t”. Unfortunately, this mix of time-independent and index information
requires extra work when writing a program to extract data from the graphics file. T i e
could be saved by creating a special data extraction program by either adapting source
code from XTV or modifying the existing output subroutines (XtvlD, Xtvplen, ...), which
would replace write statements with reads.

The actual binary graphics output is driven by Xtvdr with a value of one passed to the
dummy argument ”xmode”. This call appears in Trans, Steady, and Pstepq. The basic
calling tree associated with writing of graphics data is summarized in Fig. A.9 of App. A.
Xtvdr begins writing for a timestep by calling Xtvbufs to output the edit time. It then

Application Programming Interface Document
Rev. 0.4

Page 15

loops over components calling Rdflt to read the component fixed-length table and a
component-specific output subroutine (e.g., Xtvpipe, Xtvtee, Xtwalv, Xtvvsl, and
Xtvplen). It ends with calls to subroutines to output heat structures (Xtvht), signal
variables (Xtvsig), and control blocks (Xtvcb). Output to the binary file (xtvgr.b) is
buffered and at the lowest level written with the C function “fwrite”.

The exact contents of the file ”xtvgr.t” vary with the components in the problem and
order of execution selected by TRAC for those components. The file begins with the first
line from the TRAC input title information. After that, blocks of information follow for
all components. Currently, the only supported 1D components are the Pipe, Tee, and
Valve, which output the same set of information to ”xtvgr.t” by using XtvlD. Planned
upgrades to the graphics output will include the other 1D components, as well as
component-specific quantities such as pump speed. Special information blocks exist for
Plenum and Vessel components. Information for the ”flow” components is followed first
by blocks for all heat-structure components, then those blocks for signal variables, and
finally those for control blocks.

1D Component Information Block

First Record Group of the Block (single record): cStype, num, nc, ctitle
c8type -
num - Component number from the input deck

ctitle - Component title information from the input deck

Component type [formatting precedes this with an asterisk (*)I

nc - Total number of cells in the component

Second Record Group of the Block (single record): junl, jun2, jun3, ncelll, jcell
junl - Input junction number for the left (low-numbered) end
jun2 - Input junction number for the right (high-numbered) end

jun3 -
ncelll -
jcell -

Input junction number for the Tee side leg, right junction (if present)
Number of cells in the primary (if Tee)
Cell in the primary to which the Tee side leg attaches (if present)

Third Record Group of the Block (eight numbers per record): dx(1 : nc)
dx - Cell-length array

Fourth Record Group of the Block (eight numbers per record): grav(1 : nc+l)
grav - Cell-face gravity cosines

Fifth Record Group of the Block (eight numbers per record): fa(1 : nc+l)
fa - Cell-face flow areas

Sixth Record Group of the Block (single record): nvname
nvname - Number of variable “arrays” output to xtvgr.b

Application Programming Interface Document
Rev. 0.4

Page 16

Seventh Record Group of the Block (nvname records): vnamel, fflagl
vnamel - Decriptive name for the variable being output [formatting follows this

n m e with an asterisk (*)I
fflagl - Flag indicating size of the variable array

= 1, Cell-face variable (nc+l values)
= 0, Cell-center variable (nc values)
= - 1, Scalar variable (1 value)

Current values for vamel, associated values of fflagl and variable names are:

vnamel (l)='volume fraction'
vname 1 (2)='pressure'
vname 1 (3)='saturation temperature'
vname 1 (4)='liquid temperature'
vname 1 (5)='vapor temperature'
vname 1 (6)='liquid velocity'
n a m e 1 (7)='vapor velocity'
vname1(8)='flow area'
vname 1 (9)='liquid density'
vnamel (I O)='vapor density'
vname 1 (1 l)='solute mass fraction'
vname 1 (12)='non-~ondensible pressure'
vname 1 (1 3)='total mass-flow'
vname 1 (1 4)='vapor mass-flow'
vname 1 (1 5)='mass phase change rate'

fflagl(l)=O
fflagl(2)=0
fflagl(3)=0
fflag1(4)=0
fflag1(5)=0
fflag 1 (6)=1
fflag 1 (7)= 1
fflag 1 (8)= 1
fflagl(9)=0
fflagl(1 O)=O
fflag 1 (1 1)=0
fflag 1 (12)=0
fflag 1 (1 3)=1
fflag 1 (1 4)=1
fflag1(15)=0

alp
P
tsat
tl
tv
vl

fa
rol
rov
concn
Pan
mft
mfv
g-

w

Plenum Component Information Block

First Record Group of the Block (single record): c8type, num, 1, ctitle
c8type -
num - Component number from the input deck
1 -
ctitle - Component title information from the input deck

Component type [formatting precedes this with an asterisk (*)I

Total number of cells in the component (always 1)

Second Record Group of the Block (single record): npljn
npljn - Number of junctions connected to the plenum

Third Record Group of the Block (eight numbers per record): junj(1 : npljn)
junj - Component junction numbers associated with connections to the plenum

Fourth Record Group of the Block (single record): nvnamep
nvnamep - Number of variable "arrays" output to xtvgr.b

Application Programming Interface Document
Rev. 0.4

Page 17

Fifth Record Group of the Block (nvnamep records): vnamep, fflag
vnamep - Descriptive name for the variable being output [formatting follows this

name with an asterisk (*)I
fflag - Flag indicating size of the variable array

= 1, CeIl-face variable (npljn values)
= 0, Cell-center variable (1 value)
= - 1, Scalar variable (1 value)

Current values for vamep and associated values of fflag are

vnamep(l)='volume fiaction'
vnari,~p(2)='pressure'
vnmen(3)='saturation temperature'
vnmq(4)='liquid temperature'
vnamep(5)='vapor temperature'
vnamep(6)='liquid density'
vnamep(7)='vapor density'
vnamep(S)='solute mass fraction'
vnamep(9)='non-condensible pressure'
vname 1 (1 O)='mass phase change rate'

fflag=O
fflag=O
fflag=O
fflag=O
fflag=O
f f l ag=O
fflag=O
fflag=O
fflag=O
fflag=O

dPn
Pn
tsat
tln
tvn
roln
rovn
concn
Pan

Vessel Component Information Block

First Record Group of the Block (single record): &type, num, nrsx, ctitle
c8type
num - Component number from the input deck
nrsx
ctitle - Component title information from the input deck

- Component type [formatting precedes this with an asterisk (*)I

Number of radial cells in the 3D fluid mesh -

Second Record Group of the Block (single record): ntsx, nasx, ncsr
ntsx Number of Theta cells in the 3D fluid mesh
nasx Number of axial cells in the 3D fluid mesh
ncsr - Number of source connections to the Vessel

-
-

Third Record Group of the Block (ncsr records): ir, it, iz, juns
ir - Radial index for the junction cell
it - Theta index for the junction cell
iz - Axial index for the junction cell
juns - Input deck junction number associated with this junction between the

Vessel and adjacent 1D component.

Fourth Record Group of the Block (single record):
igeom - Set to 0 if mesh geometry is cylindrical and to 1 if it is Cartesian

Application Programming Interface Document
Rev. 0.4

Page 18

Fifth Record Group of the Block (eight numbers per record): rad(1 : nrsx)
rad - Radii of the outer radial-cell faces (igeom=O), or location of upper face in

the x direction (igeom=l). The first face is asswed to be positioned at
rad=O or x=O.

Sixth Record Group of the Block (eight numbers per record): th(1 : ntsx)
th - The first face is assumed to be positioned at th=O or y=O. This provides the

Angle (in radians) of the remaining azimuthal cell faces (igeom=O) or loca-
tion of the remaining cell faces in the y direction (igeom=l).

Seventh Record Group of the Block (eight numbers per record): z(l : nasx)
2 - The first face is assumed to be positioned at FO. This provides the location

of the remaining cell faces in the z direction (igeom=O or 1).

Eighth Record Group of the Block (single record): nvname3
nvname3 - Number of variable "arrays" output to xtvgr.b

Nineth Record Group of the Block (nvname3 records): vname3, fflag3
vname3 - Descriptive name for the variable being output [formatting follows this

name with an asterisk (*)I
fflag3 - Flag indicating size of the variable array

= 1, Cell face variable (nasx*nrsx*ntsx values)
= 0, Cell center variable (nasx*nrsx*ntsx values)
= - 1, Scalar variable (1 value)

Current values for vame3, associated values of fflag3, and variable names are given
below. Depending on the value of igeom, "xr" designates either the "x" or "r" direction,
and "yt" designates either the y or theta (azimuthal) direction. Variables with flag values
of 0 (cell center) or 1 (cell edge) have a total of nasx*nrsx*ntsx values written to xtvgr.b:

vname3(l)='volume fraction'
vname3 (2)='pressure'
vname3(3)='saturation temperature'
vname3(4)='liquid temperature'
vname3 (5)='vapor temperature'
vname3(6)='effective wall temperature'
vname3 (7)='xr liquid velocity'
vname3(8)='xr vapor velocity'
vname3(9)='yt liquid velocity'
vname3(10)='yt vapor velocity'
vname3(1 1)='z liquid velocity'
vname3(12)='z vapor velocity'
vname3(13)='solute mass fraction'

fflag3(l)=O
fflag3(2)=0
fflag3(3)=0
fflag3 (4)=0
fflag3(5)=0
fflag3(6)=0
fflag3 (7)= 1
fflag3(8)=1
fflag3(9)=1
fflag3(lo)= 1
fflag3(11)=1
fflag3(12)=1
fflag3(13)=0

alpn
Pn
tsn
tln
tvn
wallt
vlnxr

vlnyt
wnyt
vlnz

conc

WIlXT

WIlZ

Application Programming Interface Document
Rev. 0.4

Page 19

vname3(14)='non-~ondensible pressure'
vname3(15)='mass phase-change rate'
vname3(16)='xr liquid mass-flow'
vname3(17)='xr vapor mass-Aow'
vname3(1 8)='yt liquid mass-flow'
vname3(19)='yt vapor mass-flow'
vname3(20)='z liquid mass-flow'
vname3(2 1)='z vapor mass-flow'
vname3(22)='vessel water-mass'
vname3(23)='core water mass'
vname3(24)='core liquid frac'

Heat-Structure Component Information Block.

fflag3(14)=0
fflag3(15)=0
fflag3(16)=1
@ag3(17)=1
fflag3(18)=1
fflag3(19)=1
fflag3 (20)=1
fflag3(2 1)=1
fflag3(22)= -1
fflag3(23)= -1
fflag3(24)= - 1

Pan
g-
c5p4
c5p6
c5p3
c5p5
vmfil
V m h

vlqmss
vcore
corelq

First Record Group of the Block (single record): cbi +*e, num, 1, ctitle
c8type Component type (ROD or SLAB) (formatting precedes this with an aster-

isk)
num - Component number from the input deck
1 integer 1 (forced value for total number of cells)
ctitle - Component title information from the input deck

-

-

Second Record Group of the Block (single record): nodes, nzmax, mods, idbci, idbco
nodes - Number of radial conduction nodes
m a x - Maximum permitted number of axial conduction node:;
mods - Number of copies of this component
idbci - Inner-surface boundary option

= 0, Perfect insulator or, for a ROD, no inner surface
= 1, Constant HTCs and external temperatures
= 2, Coupled to fluid cells in one or more components

idbco - Outer surface boundary option

Third Record Group of the Block (single record) : nvname
nvname - fixed at 4: Number of variable "arrays" output to xtvgr.b

Fourth Record Group of the Block (four records): Index records for heat-strxture scalars
These four records each contain a decriptive name for the variable being output to the
binary file, followed by an asterisk and a flag value fixed at zero. Here, the flag value of
zero represents a scalar (or array of length 1).

'max avg x ~ d temp'
' m a hot : .emp'
'inner surf total power'
'outer surf total power'

f f l a g = O
fflag = 0
fflag = 0
fflag = 0

tramax
trhmax
tpowi
tpowo

Application Programming Interface Document
Rev. 0.4

Page 20

This general heat-structure information is followed by “m~ds” blocks of detailed rod information,
one block for each copy of the heat structure.

First Record Group of the Block (single record): c8type, num, nodes, c8type, ncr, ctitle
c8type

num - Component number from the input deck
nodes - Number of radial conduction nodes
c8type - Component type (ROD or SLAB)
ncr
ctitle

- Component type (ROD or SLAB) (formatting precedes this with an
asterisk and follows it with a “c”)

-
-

Index number of the ROD copy (a number between 1 and nrods)
Component title idormation from the input deck (formatting precedes this
with “-”)

Second Record Group of the Block (single record): nodes, nzmax, ncr, idbci, idbco
nzmax - Maximum permitted number of axial conduction nodes
ncr
idbci - Inner surface boundary option

- Index number of the ROD copy (a number between 1 and mods)

= 0, Perfect insulator, or (for a ROD) no inner surface
= 1, Constant HTCs and external temperatures
= 2, Couple to specified fluid cells in one or more components

- Outer-surface boundary option idbco

Third Record Group of the Block (eight numbers per record): radrd(1 :nodes)
Radii of the temperature nodes in the conduction mesh radrd -

Fourth Record Group of the Block (single record): nv
nv - Number of variable “arrays” output to xtvgr.b

Fifth Record Group of the Block (nvname records): vnameh, fflag
vname - Decriptive name for the variable being output (formatting follows this

string with and asterisk)
fflagh - Flag indicating size of the variable array

= 1, axial surface node value (nzmax values)
= 2, two-dimensional (2D) temperature node value (nzmax*nodes values)
= - 1, scalar variable (1 value)

Current values for vamel and associated values of fflagl are
vnameh(1)=‘axial pos’ fflagh(1)=1
vnameh(2)=’struct temp’ fflagh(2)=2
vnameh(3)=’inner htc regime’ fflagh(3)=1
vnameh(4)=’inner Stanton Number’ fflag h(4)= 1
vnameh(5)=’inner liq temp’ fflagh(5)=1

Application Programming Interface Document
Rev. 0.4

zht
rftn
ihtf
stnu
tld

Page 21

vnameh(6)=’inner liq htc’
vnameh(7)=’inner vap htc’
vnameh(S)=’outer htc regime’
vnameh(9)=’outer Star: ton Number‘
vnameh(1 O)=’outer liq temp’
vnameh(1 l)=’outer liq htc’
vnameh(12)=’outer vap htc‘

fflagh(6)= 1 hrff
fflagh(7)= 1 hrfv
fflagh(8)=1 ihtf
Bagh(9)=1 stnu
fflagh(10)=1 tld
fflagh(11)=1 hrfl
fflagh(12)=1 hrfv

Signal Variable-Component Information Blocks

First Record Group of the Block (single record header) ‘*signal’, 1, 1, ‘signal variables’
‘*signal’ - Component type is fixed to ‘*signal’
1 - Component number is forced to the value 1
1
‘signal variables’ - Title fixed as ‘signal variables’

- integer 1 (forced value for total number of cells)

Second Record Group of the Block (single record): ntsv
- Number of signal variables. This specifies the number of values

written to xtvgr.b
ntsv

This general signal variable information is followed by “ntsv” blocks of detailed information.

First Record Group of the Block (single record): “sv”, id, ‘:’ labsv, ‘*’, 0
‘sv’ -
id -

7

labsv -

record begins with the literal string “sv” to mark it as a signal variable
Input signal variable ID number (same as input variable idsv)
colon used as a separator
Label describing the function of this signal variable (generated internally
by TRAC). Output formatting follows this label immediately with an
asterisk (*) and then the integer zero (0)

‘.)

Second Record Group of the Block (single record): idsv, ism, ilcn, icnl, icn2
idsv - Input signal variable ID number
isvn - Signal variable parameter number, which indicates the source of the signal

variable (see Table VI-1 in the TRACPFl-MOD2 User’s Guide, NUREG/

Depending on the value of “isvn”, this is either a coolant loop number,
component number, trip ID number, or not used.
Cell number of the first location where the signal variable obtains
information
Cell number of the last location where the signal variable obtains
information

CR-5673)
ilcn

icnl

icn2

-

-

-

For each of these Signal variable blocks in xtvgr.t, one current time value of the signal variable is
written to the file xtvgr.b per time edit.

Application Programming Interface Document
Rev. 0.4

Page 22

~~

Control-Block-Component Information Blocks

First Record Group of the Block (single record header) ‘*control’, 1, 1, ‘control block output’
‘*control’ - Component type is fixed to ‘*control’
1 - Component number is forced to the value 1
1
‘control block output’ - Title is fixed to this string

- integer 1 (forced value for total number of cells)

Second Record Group of the Block (single record): ntcb
ntcb - Number of control blocks. This specifies the number of values written to

xtvgr.b on each time edit.

Third Record Group of the Block (ntcb records): “cb”, id,‘*’, 0
‘cb’
id
‘*’ - asterisk (*)
0 - the integer zero (0)

-
-

record begins with the literal string “cb” to mark it as a control block
Input control block ID number (same as input variable idcb)

For each control block listed in xtvgr.t, one current time value of the control block is written to the
file xtvgr.b per time edit.

11.1.9. Detailed ASCII Output for Pipe
This stage writes information to the detailed ASCII output file (trcout). The basic calling
tree associated with this output task is summarized in Fig. A.10 of App. A. The stage is
driven by Edit, which calls Sedit to write summary information for the time and Wcomp
to output information on signal variables, control blocks, and component information.
Actual component edits are produced one level down by subroutines such as Wpipe,
which in turn uses Ecomp to convert data to the requested output units (calls to Uncnvt)
and to write this data to the output file (trcout). The dominant communications channels
are modules (system-wide and component-specific data structures) down to the calls to
Uncnvt, which relies on its argument list.

Unlike the restart dump file, the form of the output is very difficult to trace from the
programming. However, the resulting output file is meant to aid the code user and is not
intended as an interface to another program. As a result, no description of this file is
provided here. This information can be obtained from App. E of the TRAC-PFl/MOD2
User’s Guide?

11.2. Special Considerations for a Tee Component

The Tee functions as two Pipe components, one of which has a set of source terms in one
cell (indexed by “jcell”) to account for flow from the other pipe. Using the source terms
currently requires that the section representing the secondary side of the Tee be
evaluated first to provide velocity information at the Tee junction. The source terms

Application Programming Interface Document
Rev. 0.4

Page 23

involve passing and storing many pieces of information through an indirect
communications route. Association of the information with a given Tee requires that the
information be stored in the component-specific data structure-in this case, the module
TeeVlt. However, the source terms are used at the lowest-level flow equation
subroutines (Femom, TflDsl, TflDs, etc.) and must be communicated via a different
route. The path chosen was to use variables with similar names in the module OneDDat.
Transfer of information to and from this module can be seen in subroutines such as Teel
and is described in detail later this section.

The functional split of the Tee into two pipes introduces a component junction that is not
included in the system-wide storage for junction information (BD and VSI arrays), but is
included in the system-wide arrays associated with the network equation solution. This
gives rise to a need for several important communicating variables. Boundary
information for the low-numbered end of the Tee secondary is stored in the Tee-specific
array, derived-data-structure tee& as the component ”teeAr(cco)%bd4”. This data
structure is contained in the module TeeArray. The index variable ”CCO” (current
component ordered) for the derived-type array teeAr is communicated to the Tee (and
all other components) through the module ”Global”. Every driver routine for
components (PreplD, OutlD, Post, etc.) sets the value of cco = compIndices(i), where ‘5“
is the position of the component in the calculational sequence. The array comphdices
also reside in the module named “Global” and is set during input processing after Srtlp
has determined the order for processing componenas.

Because the side leg behaves exactly like a pipe in the network solution, the index of the
junction index array (iou) element associated with the side leg must be communicated to
the Tee and then on to lower-level solution subroutines. The Tee component routines
(Teel, Tee2, etc.) obtain this value through the variable ”ntee”, and when driving lower-
level routines (Preper, Inner, Poster, etc.) for the side leg, pass this value on through the
variable “icme”. Both “ntee” and “icme” are contained in the module ”OneDDat”.

The other significant considerations for the Tee beyond basic boundary communication
are related to special source terms. This is first apparent during initialization with the
call to Etee from Itee and later in a similar call from Tee3 in the postpass. Etee sets
coefficients used by Femom for the implicit evaluation of momentum transport. The
following equations express the contribution from the Tee side leg to momentum flux in
the liquid motion equation at the right face of the joining cell.

where

Application Programming Interface Document
Rev. 0.4

Page 24

In this case, subscript "jN indicates the junction cell and subscript "Tee" indicates the
junction face or first cell in the side leg as appropriate. Subscripts denoting liquid have
been dropped from the velocities for brevity. Analogous equations define the values of
r2v associated with gas momentum equation at the j+1/2 face, rll associated with the
iiquid momentum at the j-l/2 (left) face, and rlv associated with the gas momentum at
the j-1/2 face. The values of rll, rlv, r21, and r2v are returned from Etee to Itee or Tee3
via the module OneDDat and copied into variables rtll, rtlv, rt21, and rt2v, respectively,
which are all contained the module TeeVlt. These four TeeVlt variables are copied back
to the corresponding OneDDat variables in subroutines Tee1 and Tee2 for use by the
low-level subroutines evaluating the equations of motion (Femom and TflDsl).

The problem of Tee momentum source terms is complicated by situations where the side
leg connects to either the first or last cell in the primary leg. In this case, it is possible that
a momentum source is produced at a component junction but that the motion equation
at that junction is evaluated by the adjacent component. As a result, the contributions of
the above flux term must be communicated to the adjacent component. The nature of
the stabilizer motion equations requires that the contributions to the source flux be
communicated in three parts. In the above example equation for fluxj,l/2, the
combination that acts as the coefficient of the new time stabilizer (tilde) velocity at the
Tee junction represents a coupling coefficient between two network junction velocities.
This coefficient is obtained from the function Teemfl and is placed in the appropriate
element of the network junction matrix for each motion equation [aov(iOl,i03) or
aov(i02,i03) for gas motion and aol(iOl,i03) or aol(iOl,i03) for liquid motion] by Fewom.
This becomes a special case in Femom for which the full equation is not evaluated but
the relevant junction array elements are modified to include the effects of side-leg flow.
The factor for the new time stabilizer velocity one face away from the component
junction is computed by the function Teemf2 and must be passed through the boundary
array [bd(i)%sxl for liquid or bd(i)%sxv for gas]. This must also occur for the remainder
of fluxj+l/2. This flux consists of purely old-time quantities that are computed by the
function Teemet and passed through bd(i)%tmsl for liquid or bd(i)%tmsv for gas.
Because of the special nature of these boundary array terms, they are generated from
Etee rather than JlD.

Transfer of these Tee momentum source terms for evaluation of the basic motion
equations (done in TflDsl) is less complex because all stabilizer velocities have been
determined by this stage of the calculation. When a Tee side leg connects to a primary
end cell, the necessary source terms are computed with a call from Tee1 to TBC1, which
in turn uses the low-level function Teemom for the detailed source calculation. This
occurs just after the final solution for the stabilizer velocities (Bkmom), placing the
values in boundary array elements bd(i)o/otmsl for liquid and bd(i)%tmsv for gas.

One other special momentum source adjustment must be made for the Tee. Although
the Tee side leg is computed just like any Pipe, the velocities feeding into momentum
flux terms from the face beyond its low-end junction need special evaluation. This is
implemented as special boundary velocities computed as follows:

Application Programming Interface Document
Rev. 0.4

Page 25

bd4%v12=cl a*vl(jcell)+c2a*vl(jcell+1)
bd4%w2=c 1 av*w(j cell)+c2av*w(jcell+ 1)
bd4%vlt2=c la*vlt(jcell)+c2a*vlt(jcell+l)
bd4%wtZ=c 1 av*wtQ zell)+cZav*wt(j cell+ 1)
bd4%vlto2=c 1 a*vlto(jcell)+c2axvlto~cell+ 1)
bd4%wto2=cl av*vvto(jcell)+c2av*wto(jcell+l)

Computation of the coefficients such as cla yields a value of zero if the associated
velocity is directed away from the side leg (including the case where the side is angled
away from the primary face associated with the velocity). Otherwise, the coefficient is
equzl to the absolute value of the cosine of the side-leg angle [abs(cost)].

The above elements of bd4 are calculated with a call to JBD4 from Teel, before calls to
Preper (evaluation of the stabilizer motion equations), and the components wt2 and vlt2
of bd4 are updated directly by Teel after the calls to Bkmom (final solution for new-time
stabilizer velocities.)

Solution for stabilizer velocities also requires direct use of the coefficients cla, cZa, clav,
and c2av. As with other such information in TeeVlt, they are copied to variables in
OneDDat (ca=cla, cal=c2a, cav=clav, cal=c2av) for communication to low-level
subroutines such as Femom.

Communication of information for mass and energy source terms to the primary leg is
currently very direct. Low-level subroutines such as TflDs have direct knowledge of the
Tee array structure and access the needed side-leg elements directly. This is not a
particularly flexible approach and should be replaced in later modernization tasks.

11.3. Other ID Components

The remaining 1D components follow the pattern of Pipe, with minor variations. Of
these components, Valve and Prizer are the closest to Pipe because neither use special
communicating variables in OneDDat. The valve carries additional variables in its
variable-length table (module ValveVlt) to model the valve face. Four of these important
variables are ivps (the face index at which the flow area is altered), ivty (the valve type),
ivsv (the variable containing the signal variable or control block identifier acting as the
independent variable in the valve tables), and avlve (area when the valve is fully
opened). The full area is needed because the valve area is tabulated or calculated as a
fraction of the fully open valve. The valve also carries extra arrays in the module
ValveArray to model the valve tables. This additional information is input in RVLVE
and Revlve; output by Wvlve, Dvlve, or Xtvvalv; and processed for each timestep by
Vlvex (called from Vlvel when ibks=l). Vlvex transfers the information on the actual
area and hydraulic diameter at the valve face to lower-level subroutines by directly
altering the elements in the 1D geometry arrays "glDAr(cco)%fa(ivps)" and
"glDAr(cco)%hd(ivps)" contained in the module GenldArray.

Application Programming Interface Document
Rev. 0.4

Page 26

The pressurizer follows a similar pattern, but with less additional information. Input
information such as the total heater power (qheat) is stored in the module PrizeVlt; qheat
is used in the subroutine PRZRXl (called by PRIZRl when ibks=l) to compute a heat
addition (or subtraction) for each cell and is communicated to low-level subroutines
through modification of the array "glDAr(cco)%hlatw". This array normally is used as
part of the communication of heat flow from all heat structures to each fluid cell. The
logic in PRZRXl assumes that contributions from heat structures already exist and adds
the contribution from the pressurizer heaters (or sprays).

PUMP differs from the Valve and Prizer components in that it communicates key
information to the calculation via OneDDat. General information on scalars such as
pump speed are stored in the module PumpVlt, and special arrays defining pump head
and torque curves and speed tables are located in the module PumpArray. Calculation
of pump head and torque is performed by calls from Pumpsr to Pumpx. Pumpsr has the
job of generating a pump momentum source term for use in the 1D hydro subroutines
(Femom and TflDsl). This source is the specific work of the pump (in Joules per
kilograms) and is stored in the variable smom in PumpVlt and transferred to the
OneDDat variable ssmom by Pumpsr and Pump2 for use in evaluating the motion
equations in Femom and TflDsl, respectively. Only one source term is generated
because the model assumes homogeneous flow at a cell face with a pump source term.
This modeling simplification currently requires that Femom and TflDs have knowledge
of the component type through use of the module Flt. The nature of the SETS numerical
method makes it ody practical to consider implicit behavior of the pump source with
respect to flow velocity. The derivative of smom with repect to velocity is calculated by
Pumpsr and stored as dsmom in PumpVlt. It is copied to "dvjp" in OneDDat by Pumpsr
and Pump2. The face at which the source ssmom is applied is communicated by the
variable "msc"(in OneDDat), which is set as msc= 2 in Pump1 and Pump2.

As noted in Sec. II.1.4, the subroutine Pumpsr is called by Preper and exists at a lower
level than similar subroutines for other components.

Break and Fill are considered to be 1D components to the extent that they use the same
1D array structures to store fluid-state information. They communicate with other
components through the boundary (bd) array but do not have the problem of interfacing
with low-level hydrodynamic routines because they are fixed or tabular boundary
conditions. Break
evaluates necessary tabular information with a call from Break1 to Break and to Fill with
a call from Fill1 To Fillx. Either of these components may be configured so that results
must be obtained from multiple tables (pressure, temperatures, void fraction, etc.) using
the same independent variable. Both use the following method. The first table is
processed with Evltab, which takes as one of its input arguments the identifier for the
signal variable or control block where the current value is the input to the table
(independent variable, or abscissa). Evltab obtains that value by direct access to the
control data structure (see Sec. IV.l), uses it in table evaluation, and returns the value
through the argument list. Work is saved by evaluating any additional tables with a
direct call to the subroutine LinintO, providing this value as an argument.

Tables are handled in a manner similar to Valves and Pumps.

Application Programming Interface Document
Rev. 0.4

Page 27

Page 28 Application Programming Interface Document
Rev. 0.4

111. THEPLENUM

The plenum is special in several respects but is still called by driver routines in the same
loops as normal 1D components. The Plenum always has just one fluid cell and permits
any number of connections to that cell from other active 1D components (no direct Break
or Fill connections). To simplify treatment of the connections, all velocity calculations at
such connections are forced to occur in the adjacent component. This is accomplished in
subroutine Srtlp (called by Input), which places all plenums after all active 1D
components in the computational order of a given loop.

Interfaces between the plenum and other fluid components follow the pattern set by
Pipe. Fluid conditions are passed through the boundary (bd) arrays, and velocity sign
convention information is passed through ”vsi”. Both of these arrays are contained in
the module named ”Boundary”. The major deviation in this regard is that boundary
information is created by a plenum for use by another component through a call to
Bdplen. Neither the subroutine Setbd nor J1D is used for this purpose. In the
computational flow, calls to Bdplen occur in positions analogous to those of Setbd and
J1D in Pipe driver routines.

Information needed for the network matrix solution is communicated via the network
arrays contained in the module Network, as with 1D components. However, indices
needed to select the correct elements of these arrays are not communicated via the global
“iou” array. That array predates the plenum and contad only enough space- for
components with three junctions. The module PlenArray contains a derived-type array
plenAr. One component of plenAr is the array ”iOjN, which contains the network indices
for all connections in that component. For the ith junction of the current plenum, the
network index would be”plenAr(cco)%iOj(i)”. The elements of these plenum index
arrays are generated during initialization in the subroutine IPLEN. Unlike 1D
components, the values contained in “iOjN are not communicated to the low-level hydro
subroutines via intermediate variables. The plenum uses its own hydro routines and
passes the index array directly through the argument list.

Application Programming Interface Document
Rev. 0.4

Page 29

Application Programming Interface Document
Rev. 0.4

Page 30

IV. VESSEL

Vessel is heavily isolated from the other components in both computational (see App. A)
and data flow. Information is received and returned by Vessel through Boundary and
Network module arrays. This is important from the standpoint of adding new 1D
components. When standard conventions are followed in setting the boundary and
network array contributions from the 1D component, the interface to a Vessel is
automatic. One important part of following these conventions is that the new
components must be processed at the same stages of the computational cycle as other 1D
components. As currently configured, Vessels must be processed after all other fluid
components. This restriction will be lifted after the modularization of the network
solution (see App. D).

The Vessel component is scheduled for modernization after completion of the initial
modernization tasks. As a result, a detailed description of data interfaces internal to the
Vessel is not being provided in this document at this time. Vessel follows the same
stages of computation documented for the pipe, with analogous calls to lower-level
subroutines. Boundary information is returned from Vessel by calls to J3D, which is
analogous to J1D- Within the calling tree for Vessel, incoming boundary information is
translated to Vessel source arrays at the component routine level (Vssll, VsslZ, and
Vssl3) and passed to hydrodynamic routines (Tf3Ds, etc.) so that the "bd" array is not
seen at the same depth as in the 1D routines. Unlike the 1D component, fluid-state

. information is passed to the hydro routines via the data structure (module VessEquiv)
and passed via the argument list only to low-level state and property subprograms
(Thermo, Htif, etc.).

Establishing an interface between Vessel and a 3D kinetics package is discussed in the
following section on heat structures. The mechanism used to extract fluid-state
information from Vessel for the calculation of HTCs should be mimicked.

Application Programming Interface Document
Rev. 0.4

Page 31

Application Programming Interface Document
Rev. 0.4

Page 32

V. HEAT STRUCTURES

Before dealing with programming related to the heat structure, it is useful to understand
the history of development for that component. The low-level subprograms for I/O,
initialization, material properties, and solution of the conduction equation originated
with the rod conduction capabilities that were integral to the Vessel component in early
versions of TRAC. Thus, it is common to see subprogram and variable names containing
the string ”rod” at lower levels. Because these rods reside in the core region of Vessel,
driver subroutines for the prepass and postpass had the names Core1 and Core3.
Creating the heat-structure component in the mid-1980s expanded on the key
conduction subroutines of both Vessel and a later 1D Core component, making both
obsolete. However, naming conventions were never altered, and only the highest-level
component routines (Cihtst, Htstrl, etc.) carry names directly associated with the
component. Low-level subprograms and arrays carry names suggesting a rod
(cylindrical) geometry, when in fact they also contain capabilities for modeling Cartesian
geometry.

The heat structure represents a special component class that is calculated separately from
the fluid components during a given timestep and is explicitly coupled only to the fluid
calculation. The structure participates in all stages of computation (Sec. I) except the
fifth, which is devoted solely to the iterative solution of the basic flow equations.
Discussions of multiple passes through components during stages 3-6 (see Secs. I and II)
are not applicable to the heat structures. - The component-level drivers for initialization
(Cihtst), prepass (Htstrl), and postpass (Htstr3) are called only once during each of these
stages.

The most significant data interface issues involve the details of the coupling between
heat structures and fluid components. The code currently operates under two
restrictions in this respect. Heat structures can never be connected to Plenum
components or to Vessel cells that contain source terms. This simply reflects a
development history in which time was not available to adapt to the Plenum data
structure or include Vessel source velocities in the evaluation of heat-transfer
correlations.

Construction of the interface to fluid components begins with input from either Rhtstr or
Rerodl of information on fluid cell connections. Variables containing the string “hcom”
are integer arrays containing the component numbers for cells beginning one cell below
the heat structure and ending one cell above the structure. The two extra cells are
necessary when liquid levels must be detected to refine the sub-grid approximation of
HTCs. Variables containing the string “hcel” are integer arrays containing the cell
number corresponding to the same elements in the ”hcom” arrays. When one of these
variable names (or pointers) ends with ”i”, it is storing information for the ”inner”
surface of the structure, and when it ends with ”o”/ it is storing information for the
”outer” surface connections.

Application Programming Interface Document
Rev. 0.4

Page 33

More communication infomation is stored in the arrays lchci and lchco during
initialization. This is generated by a combination of actions in subroutines Irodl, Lchpip,
and Lchvss. For the ith connecting cell in the hcel-hcom information, the corresponding
"lchci" array contains the component type in element lchci(2,i) (similar situation for
lchco). The element lchci(1,i) contains necessary offset information to locate fluid state
and property information in the component arrays. This is a requirement of the old
container array structure, is obsolete for the 1D components, and will become obsolete
for 3D components when that data structure is altered.

The first active communication occurs in the prepass. Here, heat-structure computations
are driven by the subroutine Htstrl. It begins the timestep by moving all new time heat-
structure information into the old-time arrays. Next, it picks up fluid information with a
call to Fltom, signaling the direction and scope of data movement by passing a value of
one through the last argument. A call from Htstrl to Corel drives the bulk of the prepass
calculations, and, as a final step, the information on HTCs and wall temperatures is
passed back to the appropriate fluid cells with another call to Fltom from Htstrl. In this
case, the reversed data flow and scope of information are signaled with a final argument
value of -1.

Communication of information between Corel and lower-level subroutines is
dominantly through argument lists. Activity in the subroutine Corel is centered on the
generation of HTCs. This is complicated by the need to maintain coefficient and wall
temperature information on both the fine axial conduction mesh and the coarse mesh
associated with the fluid cells. Corel begins with a call to TRIP, which checks to see if the
trip has been set to activate the fine mesh. The next major action is a call to Mfrod, which
sets the material properties for the structure. Corel proceeds to make any necessary
adjustments in the fine mesh with calls to Shrink, Expand, and Fnmesh. HTCs and
critical heat-flux temperatures are generated with calls to Zcore, Htvssl, and Htcor as
needed. As these calls are made, Corel computes coarse node integrals for six
quantities: (1) the product of liquid HTC and wall area (hlar); (2) the product of vapor
HTC and wall area (hvar); (3) the product of liquid HTC, wall temperature, and wall
area (hlatr); (4) the product of vapor HTC, wall temperature, and wall area (hvatr);
(5) the wall area (watr); and (6) the product of subcooled boiling heat flux and wall area
(hgamr). At the same time, coarse node averages are computed for the critical heat flux
(CHF) and the temperature of the CHF. Corel concludes with any necessary calculations
for heat sources, including possible calls to obtain reactivity feedback information
(Rfdbk) and to compute the solution of the point kinetics equations (Rkin, also used for
tabulated power sources).

An understanding of Fltom is important to any near-term creation of interfaces to the
fluid or heat-structure data. However, it should be noted that this method of
communication will be replaced in the late modernization stages of system service
activities described in App. D.

Fltom contains nested DO loops that cycle over all elements of the heat structure
(indexed by ncr=l,nrods) and over all active coarse axial levels within each element or

Application Programming Interface Document
Rev. 0.4

Page 34

all fluid cells communicating with the element (indexed by nz=nzl,nzu). This sweeps
over all cell interfaces between conduction and fluid cells. The loop structure has
separate blocks for processing inner and outer surfaces. Any necessary shifts in the fluid
cell location are computed based on the input array "idrod", which is used to shift the
location of structure copies relative to the base location given in the "hcel" array (shift
stored in the variable nzz). The actual transfer of information is accomplished in Piprod
for 1D components or Vssrod for Vessels. One call is made to one of these subroutines
for each communicating fluid cell. The final dummy argument for FLTOM is passed on
as the final argument to Piprod and Vssrod to give them information on the scope and
direction of data transfer.

Piprod begins by determining the position of the connecting fluid component in the
ordered component data arrays (stored in "i"). If the final argument (imfl) is negative,
data are moved to the fluid component arrays, which is required to compute heat
sources (hgam, hla, hva, hlatw, hvatw, and wat) and inverted annular flow (finan). This
is accomplished with calls to the subroutine "IncrementGenld", which adds the current
heat-structure contributions to whatever has already been contributed to the fluid cell
from other heat structures. If "imfl" is 2, Piprod will bring new-time fluid temperatures
(tln and tvn) into the heat-structure data (tlnr and tlnr) with two references to the
function "GetGenld" (used only from the postpass). If "imfl" is one, Piprod loads all
necessary fluid-cell geometry, fluid-state, and fluid-property information into the
corresponding heat-structure arrays. In this process, a negative value of "ihcel" (fluid
cell number) is used as a flag if the heat structure is oriented upside down relative to the
fluid cell. This produces a different offset (ioff) for fetching the appropriate cell face
velocity.

Vssrod follows a pattern similar to Piprod, using the sign of the axial position index "iz"
as a flag on reversed relative orientation. For negative "imfl", additional information is
transferred to the Vessel database when the new reflood model is active. This is used in
calculating interfacial drag and HTCs, which are consistent with conditions created by
the heat transfer. All data transfers in Vssrod currently occur via direct FORTRAN
assignment statements involving locations in the Vessel and heat-structure arrays. This
will be changed to the use of subroutines similar to "GetGenld" and "IncrementGenld"
when modernization of the Vessel and heat-structure data structures is completed.

Heat conduction computations are driven in the postpass by subroutine Htstr3. It
contains necessary operations for a timestep backup (oitno=-loo), but normally just
updates fluid temperature information calling Fltom with the last argument (imfl) set to
2 and drives the conduction calculation with a call to Core3. It completes the timestep
with a call to Htstrp to compute the instantaneous power and energy content for all heat
structures for use in energy balance calculations.

The subroutine Core3 basically acts as a transition between data-structure and
argument-based communication of information. It loops over all copies of the heat
structure, calling Frod with all necessary physical information passed through the Frod
argument list. Frod uses Hgap to obtain gap HTCs (if needed) and calls Rodht to
perform the actual 2D transient conduction calculation.

Application Programming Interface Document
Rev. 0.4

Page 35

Application Programming Interface Document
Rev. 0.4

Page 36

VI. NONCOMPONENT MODELS

There are six major noncomponent models in TRAC-M signal variables, control blocks,
trips, constrained steady state, hydraulic-path steady-state initialization, and radiation.
The radiation model is not currently functional, but will be reimplemented in the 3D
modernization project. Documentation on the interface to the radiation model will be
provided at that time.

VI.1. Signal Variables, Control Blocks, and Trips

Signal variables, control blocks, and trips are tightly linked both in the computational
and data structures of the code. They are input to the code by a call to Rcntl from
subroutine Input or on restart by a call to Recntl from Rdrest. Evaluation of these
variables takes place once each timestep through a call to Trips at the very beginning of
subroutine Prep. Trips loops over the evaluation of all signal variables and control blocks
and trips a total of ”ntcp” times to permit iterative evaluation of controls. The user sets
the variable “ntcp” in the input data file. A suibset of all signal variables, control blocks,
and tribs may be evaluated during each of the ”ntcp” loops. Actual evaluation of signal
variables is controlled by Svset, which in turn calls Svsetl to evaluate signal variables
associated with 1D components, Svset3 to evaluate signal variables associated with 3D
(Vessel) components, and Svseth to evaluate signal variables associated with heat
structures. Once signal variables are evaluated, Trips calls Cbset to evaluate control-
block functions 1 - to 61 in Conblk and control-block functions 100 (time delay), 101
([fcn(x)], and 102 ([fcn(xl, x2, xg)] during all three stages of a timestep. Trips numbered
200 [proportional-integral (PI) controller] and 201 [proportional-integral differential
(PID) controller] are evaluated with a call from Trips to Trpset.

Values from signal variables, control blocks, and trips are accessed by most components,
usually during the prepass. The trip status is easily accessed through use of the
subroutine Trips. The ID of the trip to be queried is passed as the first argument to Trips.
The second through fourth arguments return the set status (iset), the time since last reset
(tlaps), and the difference between the input signal to the trip and its setpoint value
(delsv). Unfortunately, no such subroutines are available to obtain values of signal
variables and control blocks. Components needing this information access the control
data structure directly.

The control data structure currently is still based on integer pointers into container
arrays. Integer values are stored in the array ”ict”, and reals are stored in “act”. The
pointer to the beginning of data in each of these arrays is ”lcntl”, which is set as ”lcntl=l”
in subroutine Input. Pointers to the arrays are still in the form used by old TRAC
versions, which assume that integers and reals have the same length and physically
occupy the same array space. This results in wasted space in ”ict” and ”act” but eases
the transition to a modernized code. The layout of the control data arrays is provided at
the beginning of Rcntl and reproduced on the following page. Coding in component
routines to access values of signal variables or control blocks is dependent on a
knowledge of this structure. Extraction of these values will become a much more
transparent process after full modernization of the data structure.

Application Programming Interface Document
Rev. 0.4

Page 37

The following tabulation provides a definition of control parameters stored in the act or
ict array [Note: act(1) = act(lcntl)].

Contents of act(lcntl+pointer)
to act(pointer+length-1)

Dimension Data
Total number of control-parameter

storage locations required
ntsv,
ntcb,
ntcf,

ntse,

ntct,

ntsf,

ntdp I

ntsd,

total number of signal variables
total number of control blocks
total number of control-block
tabular data entries
total number of trips
number of control-parameter-
evaluation passes
total number of different
signal-expression-trip signals
total number of different
trip-controlled-trip signals
total number of different
set-point-factor tables
total number of trips that when
set on generate a restart dumy,
total number of trips that when
set on initiate use of special
time-step data

Control-parameter-evaluation pass data
- The following six parameters define
each of the ntcp evaluation passes

isvl, smallest signal-variable id
number evaluated during the
evaluation pass

number evaluated during the
evaluation pass

block id number evaluated
during the evaluation pass

block id number evaluated
during the evaluation pass

number evaluated during the
evaluation pass

itpa, largest (magnitude) trip id
number evaluated during the
evaluation pass

isv2, largest signal-variable id

icbl, smallest (magnitude) control-

icb2, largest (magnitude) control-

itpl, smallest (magnitude) trip id

Application Programming Interface Document
Rev. 0.4

PointerLength

1

1
2
3

4
5

6

7

8

9

10

11

12

11

6* nt cp

Page 38

- After all the control parameters
are read from input and the restart
file, subroutine order rearranges
each of the three control-parameter
types in order of increasing id num-
ber magnitude; the above six para-
meters for each evaluation pass are
then redefined with their corres-
ponding control-parameter type
list (do loop) index number

Signal Variable Data
- The following seven parameters
define each of the ntsv signal
variables

idsv, the signal-variable id number
isvn, the signal-variable parameter

ilcn, the coolant loop number,
number

component number, or trip id
number where the signal
variable is defined

icnl, the first-location cell number
icn2, the second-location cell number
6th parameter, previous value of the

7th parameter, present value of the
signal variable

signal variable

Control-Block Data
- The following seventeen parameters
define each of the ntcb control
blocks

idcb, the control-block id number
icbn, the control-block mathematical

icbl, the first input-parameter id

icb2, the second input-parameter id

icb3, the third input-parameter id

cbgain, the control-block gain factor
cbxmin, the minimum value of the

control-block output parameter
cbxmax, the maximum value of the

control-block output parameter
cbconl, control-block first constant

operation number

number

number

number

Application Programming Interface Document
Rev. 0.4

12+6*ntcp 7"ntsv

12+6*ntcp 17*ntcb
+7* nt sv

Page 39

cbcon2, control-block second constant
flagl, the control-block integration

limit flag (a2)
flags, the control-block output

status flag (a21
cbinl, the control-block first input-

parameter value
cbin2, the control-block second input-

parameter value
cbin3, the control-block third input-

parameter value
16th parameter, previous value of the

control-block output parameter
cbout, present value of the control-

block output parameter

Control-Block Tabular Data
- Storage space is reserved here for
the tabular data from all icbn=100
l01,and 102 control blocks

Control-Block parameter units label data.
and trip parameter units label data and
trip signal-expression constant units
label data

Trip Data
- The following eighty parameters
define each of the ntrp trips

idtp, the trip id number
isrt, the signal-range-type number
iset, the trip-set-status number
itst, the trip-signal-type number
idsg, the id number defining the trip

signal
setp(i) for i=1,4; the ith set-point

value
dtsp(i) for i=1,4; the ith set point's

de Lay time
ifsp(i) for i=1,4; the ith set point's

set-point-factor table id number
18th parameter, delsv, the difference

between the trip-signal value
and the set-point value that
turns the trip off

this trip's signal
19th parameter, the previous value of

20th parameter, the previous subrange

Application Programming Interface Document
Rev. 0.4

12+6* ntcp
+7*ntsv
+17* nt cb

ntcf

12+6*ntcp 6*ntcb
+7*ntsv +ntrp
+17*ntcb +5*ntse
+ntcf

12+ 6" ntcp
+7* ntsv
+17* ntcb
+ntcf

+6*ntcb
+ntrp

+5* nt se

8 0" ntrp

Page 40

integer number where the trip-
signal value resided (l=left,
2=center or right, 3=right)

are defined by the following
twelve parameters; the first
pending set-status-change data
is stored in the 21th to the
32th parameters, the second is
stored in the 33th to the 44th
parameters, etc.

parameter 1, the trip-signal sub-
range number corresponding to
the pending set-status change

parameter 2, the problem time at
which the trip is to be changed
to this set status

Five data pairs are stored here to
save the problem time and the
delsv (18th parameter) values
over a past time interval cor-
responding to the delay time of
the set point that turns the
trip off; these data are stored
so that a delay time shift can
be incorporated into the evalu-
ation of delsv for the 18th
parameter; in this way, the
value of delsv goes to zero at
the same time that the trip is
turned off

Up to five pending set-status changes

Trip-Signal-Expression signal data
- The following thirty-eight para-
meters define each of the trip-
signal-expression signals that
are different

idse, the trip-signal-expression id
number

inse, the number of subexpressions
defining the signal expression

incn, the number of different con-
stants referenced by the sub-
expressions

for each of ten subexpressions
are stored here

parameter 1, the id number of the

The following set of three parameters

Application Programming Interface Document
Rev. 0.4

12+6*ntcp 38*ntse
+7* ntsv
+17* ntcb
+ntcf

+6*ntcb
+ntrp

+5* ntse
+80*ntrp

Page 41

arithmetic c. :-ator used by the
subexpres sic

parameter 2, the -I number of the
subexpression's first argument

parameter 3, the id number of the
subexpression's second argument

five constants used as arguments
in the subexpressions

Storage space is reserved here for

Trip-Controlled-Trip signal data
- The following twelve parameters
define each of the trip-controlled-
trip signals that are different

idtn, the trip-controlled-trip id

intn, the number of trips whose set-
number

status values define this trip's
signal

Storage space is reserved here for ten
trip id numbers whose set status
define the trip signal

Trip Set-Point-Factw table data
- The following twenty-three para-
meters define each of the set-point
factor tables that are different

idft, the set-point-factor-table

idsg, the id number for the set-
id number

point-factor table's independent
variable

inft, the nur:-?r of set-point-factor
table e..rry pairs of data

Storage space is reserved here for ten
pairs of independent variable
and set-point factor values of
tabular data that define the
set-point-factor table

Trip-initiated restart dump and problem
termination data
- The following l+ntdp parameters
define the trips that when set on
generate a restart data dump and
possible problem termination

ndmp, the number of trip id numbers
controlling dumps and exit

Application Programming Interface Document
Rev. 0.4

12+6* ntcp 12* ntct
+7* ntsv
+17*ntcb
+ntcf

+ntrp

+8 O* ntrp
+38*ntse

+6*ntcb

+5*ntse

+12+6* ntcp 23* nts f
+7*ntsv
+17* nt cb
+ntcf

+6* ntcb
+ntrp

+5*ntse
+80*ntrp
+38*ntse
+12* ntct

12+6*ntcp min(ntdp, 1)

+17*ntcb
+ntcf

+6*ntcb
+ntrp

+5*ntse

+7* ntsv +ntdp

Page 42

Storage space is reserved here for
ntdp trip id numbers

+8 O* ntrp
+38*ntse
+12* nt ct
+23* ntsf

Trip-initiated time-step data
- The following fifteen parameters
define each of the ntsd special
time-step data sets

ndid, the id number for this time-

ntid, the number of trip id numbers
step data set

that initiate use of this
time-step data

five id numbers of trips that
initiate use of this time-step
data

Storage space is reserved here for

dtmin, the minimum time-step size
dtmax, the maximum time-step size
dtend, the problem time interval

during which these time-step
data are to be applied

to be applied to the existing
timestep for defining the time
step to be used

dtsof, the new timestep or the :-actor

edint, the print edit time interval
gfint, the graphics edit time interval
dmpit, the restart dump edit time

sedint, the short print edit time
interval

interval

etime, the problem time corresponding to
this control parameter data

12+6*ntcp 15*ntsd
+7*ntsv

+17* ntcb
+ntcf

+ 6* ntcb
. +ntrp
+5* ntse

+80* ntrp
+38*ntse
+12* ntct
+2 3* nt s f
+min (ntdp, 1)

+ntdp

ict(1)

The total number of control-parameter storage locations required is
ict(1) =12+6*ntcp+7*ntsv+l7*ntcb+ntcf+6*ntcb

+ntrp+5 *ntse+80*ntrp+3 8*ntse+ 12 *ntct
+23 *ntsf+min(ntdp,l)+ntdp+l5*ntsd

1

PI- and PID-controller blocks have slightly different definitions for some of the 17 stored
values. If kcb is the index pointing to the element just before the beginning of PI- or
PID-controller block data, then the following definitions are in effect:

Application Programming Interface Document
Rev. 0.4

Page 43

act(kcbt5) = first constant wt of the weighted summer (was icb3)
act(kcb+l 1) = desired delta (At) error removal time constant (was flag3)
act(kcb+l2) = first-order lag tau (2) time constant (was flags)
act(kcb+l3) = previous delta (AF) error (was cbinl)
act(kcb+l4) = previous (gain * time integral of delta F) (was cbin2)
act(kcb+ 15) = previous (gain * delta F time derivative + delta f) (was cbin3)

VI.2. Constrained Steady State

There are three types of steady-state calculations: generalized steady state (GSS) for
Stdyst=l or 3, constrained steady state (CSS) for Stdyst = 2 or 4, and static-check steady
state (SSS) for Stdyst = 5 (Word 1 on Main Data Card 4). A GSS calculation evaluates a
pseudo-transient timestep solution that asymptotically converges to the steady-state
solution. Convergence is based on the maximum fractional change per second of seven
hydraulic-solution parameters, all being less than the input FORTRAN variable EPSS. A
CSS calculation is a GSS calculation where additional user-defined component-action
adjustments are made by a PI controller to achieve a known and/or desired hydraulic
steady-state condition. The nature of the available CSS controllers and their evaluation
and database are described in this section. An SSS calculation checks for erroneous
momentum and heat sources in a plant model by having TRAC not evaluate the pump
momentum source and heat transfer so that fluid flow is expected to go to zero
asymptotically. -

A CSS controller adjusts an uncertain component-action state to achieve a better-known
hydraulic condition in the steady-state solution. There are four types of CSS controllers
from which the TRAC user can select. Each type can be applied to one or more
components in a plant model. A type-1 CSS controller adjusts a pump impeller's
rotational speed to achieve a desired fluid mass flow through the Pump component. A
type-:! CSS controller adjusts a valve's flow-area fraction to achieve a desired adjacent-
cell upstream fluid pressure or fluic xass flow through the Valve component's
adjustable interface. A type-3 CSS con er performs one of three different adjustments
(pump-impeller rotational speed of a component, flow-area fraction of a Valve
component, or mass flow in or out of a Fill component) to achieve a desired fluid mass
flow through its component that equals the fluid mass flow at a designated location in
the plant model. A type-5 CSS controller performs one of four different adjustments to a
Htstr component or its hydraulicallv :oupled Break components (hydraulic-channel
fluid pressure at the inner or outer surface; heat-transfer area at the inner, outer, or both
surfaces; thermal conductivity of the inner, outer, or both surface nodes or of all nodes;
or heat-transfer area of both surfaces and thermal conductivity of all nodes) to achieve a
desired single-phase fluid temperature or -phase gas volume fraction at a designated
location in the plant model. The type-4 C,?Z controller was eliminated when the Stgen
component was removed from TRAC. It djusted the secondary-side fluid pressure or
the tube inner and outer heat-transfer areas of a steam generator to achieve a desired
primary-side downstream-location liquid temperature. By remodeling a Stgen
component with Pipe, Tee, and Htstr components, the functionality of the type-4 CSS
controller is provided by a subset of the functionality of the type-5 CSS controller.

Application Programming Interface Document
Rev. 0.4

Page 44

Each of the Ncontr user-defined CSS controllers requires one input-data record with four
or five values read by Input (adjusted-component ID number, minimum and maximum
range of parameter adjustment, the type or location of the monitored parameter that is to
have a desired value, and the type of adjusted parameter). Each CSS controller's desired
hydraulic-parameter value is input at its monitored-parameter location in the
component data. CSS-controller data are not written to the dump/restart file and so
need to be reinput by the Tracin file if the CSS calculation is continued with a restart.
The number of CSS controllers and their input parameters can be changed during a
restart. Components defining the desired hydraulic-parameter value for each CSS
controller also need to be reinput by the Tracin file. This later requirement makes
restarting a CSS calculation inconvenient. Generally, TRAC users evaluate a CSS
calculation to steady-state convergence without doing a CSS-calculation restart.

After reading a component's data from the Tracin file, subroutines Rpump, Rvalve, Rfill,
and Rhtstr determine if their component is being adjusted by a CSS controller when
Stdyst = 2 or 4. If a CSS controller is being applied to the component, the desired
hydraulic-parameter value is obtained from its specified location for types 1, 2, and 5
controllers. Type3 CSS controllers get their desired fluid mass flow each timestep from
its specified location in the plant model. For the Ith CSS controller (where I = 1,2, . . . ,
Ncontr), a signal variable with ID number 9900+I is created to monitor the desired
hydraulic-parameter value at its specified location, and a M-controller control block with
ID number -(9900+I) is created to evaluate the adjustment of the component-action
parameter. Signal variable ID numbers >9900 and -9999 and control block ID numbers
<-9900 and -9999 are reserved for CSS-controller parameters defined internally by
TRAC.

The Kth type-3 CSS controller, which adjusts a Pump or Valve (where K = 1, 2, . . . ,
Nconts), requires a second signal variable with ID number 9900+Ncontr+K to monitor
the pump-impeller interface or adjustable-valve interface fluid mass flow. The difference
between the 9900+Ncontr+K signal-variable fluid mass flow and the 9900+I signal-
variable fluid mass flow drives the PI-controller control block adjustment of the pump-
impeller rotational speed or the valve adjustable-interface flow-area fraction. A M-
controller control block is not defined for a type3 CSS controller, which adjusts the in-or-
out fluid mass flow of a Fill component. That is because the 9900+I signal-variable fluid
mass flow determines the Fill-component fluid mass flow directly for the next timestep.
An absolute-value function control block with ID -(9900+1) of the 9900+I signal
variable's fluid mass flow is defined instead. It is this absolute-value fluid mass flow
with a positive sign for outflow from the Fill and a negative sign for inflow to the Fill
that is defined as the adjusted fluid mass flow of the Fill component.

There are Ncontp type-5 CSS controllers that adjust the hydraulic-channel fluid pressure
at the inner or outer surface of an Htstr coniponent. They each have 50 elements of the A
array reserved to save the ID numbers of all Break components that are hydraulically
coupled to the adjusted Htstr. The fluid pressure is adjusted by the Htstr's PI-controller
in all hydraulically coupled Break components. An ID list of Valve components that are

Application Programming Interface Document
Rev. 0.4

Page 45

closed and not adjusted by a CSS controller is saved by Input in array Nwnvc(N) for N =
1,2, . . . , Nvc - 50. This ID list is used by Fbrcss (called by Input) to determine all Break
components that are hydraulically coupled to the Htstr. Breaks separated from the Htstr
by these Valve components that are closed and not adjusted by a CSS controller are not
considered to be hydraulically coupled to the Htstr component.

Data storage for CSS controllers consists of the 5*Ncontr input-data values in the A array
with pointer Lcontr, values of Ncontr and Nconts in common block Contrl, 7 values for
each of the Ncontr+Nconts created signal variables, 17 values for each of the Ncontr
created control blocks, 5O*Ncontp elements of the A arrays with pointer Lcontp for the
Break components hydraulically coupled to type-5 CSS controllers, and 50 elements of
the Numvc array in subroutine Input.

The CSS-controller signal variables and control blocks are evaluated for each timestep by
subroutine Prep, which calls Trips, which calls Svset for signal variables and CBSET for
control blocks (see VI.1). Then subroutine Prep:

1. for types-1 and -3 CSS controllers applied to a Pump component, calls PreplD,
which calls Pumpl, which calls Preper, which calls Pumpsr to apply the PI-
controller control-block-determined pump-impeller rotational speed to the Pump
component;

-2. for types-2 and -3 CSS controllers applied to a Valve component, calls PreplD,
which calls Vlvel, which calls Vlvex to apply the PI-controller control-block-
determined adjustable-valve interface flow-area fraction to the Valve component;

3. for type-3 CSS controllers applied to a Fill component, calls PreplD, which calls
Filll, which calls Fillx to apply the absolute-value control-block-determined in-or-
out fluid mass flow to the Fill component; and

4. for type-5 CSS controllers applied to a Htstr component, calls Htstrl, which calls
Core1 to apply the PI-controller control-block-determined heat-transfer area and /
or thermal conductivity to the Htstr component. For type-5 CSS controllers that
adjust the hydraulic-channel fluid pressure at the inner or outer surface of the Htstr,
Prep calls PreplD, which calls Break1 to apply the PI-controller control-block-
determined adjustment of the pressure boundary condition for Break components
hydraulically coupled to the Htstr component.

Interactive feedback between CSS controllers needs to be considered by TRAC users
when defining them. Their derived form assumes no interactive feedback. When the
adjustments of two or more CSS controllers are strongly coupled by the thermal-
hydraulic solution, their predicted controller adjustments may be bad, causing the
solution to wander and not converge to the desired thermal-hydraulic parameter values.
One such interaction has been programmed for in TRAC. When a type-5 CSS controller
adjusts the fluid pressure where a type-2 CSS controller defines the desired value for an
upstream fluid pressure, the pressure adjustment of the type-5 CSS controller also is

Application Programming Interface Document
Rev. 0.4

Page 46

applied to the desired value for the type-2 CSS controller's upstream fluid pressure. The
desired value of the upstream fluid pressure becomes a moving target for the type-2 CSS
controller, just as the desired fluid mass flow at a specified location in the plant model for
a type-3 CSS controller becomes a moving target when it varies each timestep.

The CSS-controller-adjusted component-action parameter is part of the component data
that are output to the restart-data Trcdmp file. Signal variables with ID numbers >9900
and -9999 and control blocks with ID numbers <-9900 and --9999 are not output to the
restart-data Trcdmp file. Restarting a transient calculation from the last (or any one) of
these data edits will maintain the CSS-adjusted value of the component-action
parameter at the start of the transient. That value remains constant until a user-defined
component-action adjustment defined by the component data is applied during the
transient calculation.

These four CSS-controller types are programmed for user convenience. An equivalent
controller (except for the heat-transfer area and thermal conductivity adjustments of a
type-5 CSS controller) could be defined directly through input with signal variables,
control blocks, and component actions of the TRAC control system. For controller types
h a t are not programmed, the TRAC user can define them through input as long as the
controller's adjustment is an existkg component action (see Table 2-4 in the TRAC
Theory manual3). Additional component-action and CSS-controller types could be
programmed if their availability is required by the user community.

VI.3. Hydraulic-Path Steady-State Initialization

The initial therrnal-hydraulic steady-state solution estimate, user specified by the
hydraulic-component input data, generally can be improved by the hydraulic-path
steady-state initialization procedure in TRAC before the steady-state calculation is
evaluated. Doing this generally reduces the computational effort of the steady-state
calculation. The user selects this option by adding 2 to the value of Stdyst for a GSS or
CSS calculation; i.e., Stdyst=l or 2 for a GSS or CSS calculation may be defined as
Stdyst=3 or 4 for a GSS or CSS calculation with its initial thermal-hydraulic steady-state
solution estimate internally initialized by TRAC during the initialization phase of a GSS
or CSS calculation.

Choosing the hydraulic-path steady-state initialization-procedure option requires the
TRAC user to input hydraulic-path steady-state initialization data in the TRACIN file.
These input data are defined by the input-data format description in Sec. 6.3.4 of the
TRAC User's Guide! In specifying these data, the 1D hydraulic-component network of
the plant model is partitioned into Npaths connecting and nonoverlapping 1D flow
paths. All possible 1D flow paths in the network are considered unless the input 1D
hydraulic-component data already define such a flow condition (and is not connected to
a Plenum component) or the ID path's steady-state flow is not expected to be significant.
Even 1D paths without flow may be considered in order to define an appropriate
thermal condition (not defined by the 1D hydraulic-component data). The input
hydraulic-component data need to be defined only as isothermal and no flow when

Application Programming Interface Document
Rev. 0.4

Page 47

selecting the hydraulic-path steady-state initialization option. During the initialization
phase, TRAC replaces the hydraulic-component gas volume fraction, phasic
temperatures, and phasic velocities input data with the thermal-hydraulic parameter
values specified by the hydraulic-path steady-state initialization data.

Hydraulic-path steady-state initialization data are what the TRAC user knows or
estimates the steady-state thermal-hydraulic solution will be along each of the 1D flow
paths. Each 1D flow path has its entrance and exit mesh-cell interfaces defined where
inflow and outflow occur to the path. A known or estimated steady-state phasic-
temperature and phasic-velocities flow condition is defined at a single mesh-cell
interface anywhere within the 1D flow path (inclusive of its end interfaces). The total
and noncondensable-gas pressures may be defined as constant along each 1D flow path
or defined by the 1D hydraulic-component data. A significant power source or sink
along a subrange of mesh cells within the path also needs to be defined (such as for heat
transfer between the primary and secondary sides of a heat exchanger). 1D flow paths
begin or end at any mesh-cell interface as long as they are different interfaces and do not
overlap internally with the cells of other 1D flow paths. However, 1D flow paths must
begin or end at the internal-junction interface of a Tee or Sepd component, at a junction
of a Plenum component, or at a source-connection junction of a Vessel component. The
internal-junction interface of a Tee or Sepd component and the junction of a Plenum
component must define the phasic-temperature and phasic-velocities flow condition of
its 1D flow path. Plenum component junctions are assumed to have no steady-state fluid
flow if they do not define the end interfacz o€-a 1D flow path. However, the fluid flow
condition at Vessel-component source-connection junctions may be input specified by
hydraulic-component data or initialized by hydraulic-path steady-state initialization
data. This provides sufficient information for TRAC internally to initialize the steady-
state thermal-hydraulic condition of all 1D hydraulic components along each 1D flow
path, as well as all of the Plenum and Vessel components to which such 1D flow paths
may be connected.

The 1D hydraulic-component wall and Htstr component Rod or Slab temperature is
defined by the input component data and is not initialized by the hydraulic-path steady-
state initialization procedure. This also applies to the total and noncondensable-gas
pressures unless they are initialized with a constant value for all cells of a 1D flow path.
Structure temperatures and coolant pressures need not be initialized accurately because
the steady-state calculation quickly determines their steady-state condition consistent
with the gas volume fraction, phasic temperatures, and phasic velocities defined by the
hydraulic-path steady-state initialization procedure. On the other hand, the gas volume
fraction, phasic temperatures, and phasic velocities are the slowest to converge to their
steady-state solution and usually require at least three or four convective-flow passes
through each 1D flow path to converge to their steady-state values if a significant change
is required in the initial thermal-hydraulic solution estimate. Providing a good initial
estimate for the gas volume fraction, phasic temperatures, and phasic velocities can
significantly reduce the TRAC evaluation time needed to satisfy the steady-state
convergence criteria.

Application Programming Inx? -face Document
Rev. 0.4

Page 48

Subroutine Init, at the beginning of the TRAC initialization phase, calls Icomp, which
calls Ihpssl to evaluate the hydraulic-path steady-state initialization procedure.
Subroutine lhpssl performs two passes through all of the 1D hydraulic components.
The first pass initializes the gas volume fraction, phasic temperatures, and phasic
velocities-Gf all 1D hydraulic components dehed b'y 1D flow paths. The second pass
adjusts the gas volume fraction and phasic velocities donored from two-phase fluid
mesh cells. This is done to conserve the mesh-cell interface fluid mass flow and the total
input fluid-mass inventory of all hydraulically coupled 1D components to which two-
phase mesh cells are a part. Both of these solution-estimate initialization passes are
performed by Ihpssl before the regular two-pass initialization is evaluated by Icomp for
all 1D hydraulic components.

Each 1D hydraulic component is considered separately during the first pass of the
solution-estimate initialization. For each component, while considering all of its
hydraulically coupled neighboring 1D hydraulic components, a search of all the Npaths
input-defined 1D flow paths is performed to determine if part or all of the component's
cells lie within any of the 1D flow paths. When such a path is found, the path's defined
thermal-hydraulic flow condition is determined to be either in the component or in a
hydraulically coupled neighboring component. The latter option requires that the
thermal-hydraulic flow condition be moved to one of the junction interfaces of the
component. Moving the thermal-hydraulic flow condition to a junction interface of the
component of interest requires incorporating fluid mass-flow and energy-flow sources
and sinks to each Jcell from Tee or %pd component interna: junctions along the way, as
well as incorporating power sources and sinks to all mesh cells along the way. Fluid
mass flow, energy flow, and power sources and sinks also are incorporated when
moving the thermal-hydraulic flow condition from the component junction to interfaces
within the component in the process of defining the interface mass flow and cell energy
throughout the component. The phasic temperatures then are determined from the cell
energy, the phasic densities from the phasic temperatures, and the phasic velocities from
the phasic densities and interface mass flow and area.

The gas volume fraction a for two-phase fluid lies between a, and q,, where a = a,
and V, = V, - (pL/pG), assuming no interfacial drag, and a = a, and V, = V, ,
assuming infinite interfacial drag. During the first pass of the initialization procedure,
four fluid masses are summed over each region of hydraulically coupled 1D
components: (1) the MASI fluid mass input by the 1D hydraulic-component data; (2) the
MAST fluid mass based on a = 0, cq,, or 1 and TG and TL initialized; (3) the MASM fluid
mass based on a = 0 , G, or 1 and TG and TL initialized; and (4) the MASN fluid mass
based on a = a, and TG = Tsat = TL initialized. This fluid-mass inventory information is
used during the second pass of the initialization procedure to determine the a, I a I a,
gas volume fraction in two-phase mesh cells. This conserves the input-specified fluid
mass MASI by defining

a = a,+(a,-a,).f ,

Application Programming Interface Document
Rev. 0.4

Page 49

where

f = (MASI-MAST) / (MASM-MASN) .

See Sec. 2.4.8.1 of the TRAC Theory Manual2 for further details.

During the first pass of the initialization procedure, the thermal-hydraulic condition of
each Plenum-component cell is initialized in Ihpssl. This is based on summing the
connecting 1D flow-path fluid mass and energy inflows and outflows. The coolant
enthalpy of the Plenum cell is defined by the ratio of the energy inflow to the mass
inflow. This ratio should equal the ratio of the energy outflow to the mass outflow. A
warning message is issued if the user-specified fluid mass and energy inflows and
outflows differ by more than 1%. The summed fluid mass inflows and outflows are
constrained to be equal by multiplying the inflows by f and dividing the outflows by f,
where

f = J(outflow)/(inflow) .

The gas volume fraction and phasic temperatures are evaluated based on the cell
enthalpy and pressure. Two-phase fluid mass conservation is applied during the second
pass of the initialization procedure, as described above. The phasic velocities at each
junction are defined by the phasic mass flows divided by the donor-cell phasic volume
fraction times the phasic temperature-dependent density.

After the 1D hydraulic-component gas-volume-fraction, phasic-temperature, and
phasic-velocity distributions have been initialized from hydraulic-path steady-state
initialization data in Ihpssl, their fluid mass and energy flows at all source connections
to each Vessel component are evaluated by subroutine Ihpss3 called by Civssl. This
determines the boundary conditions for defining mass- and energy-conservation matrix
equations for each Vessel component. The net fluid mass flow is required to be zero for
all source connections to a Vessel component. A warning message is printed if the
summed fluid mass inflows and outflows differ by more than 1%. The summed fluid
mass inflows and outflows are constrained to be equal by multiplying the inflows by f
and dividing the outflows by f, where f = A(outflow)/(inflow) . The difference
between the summed energy outflows and energy inflows is defined to be the power
generated in the core region of the Vessel component. When a core region is not defined
(when ICRU = 0 and ICRL = 0), this power is assumed to be generated over the entire
Vessel component. The power volumetric generation rate is assumed to be constant in
the structure material of each cell of the core region or Vessel [in the 1-FRVOL(I,J,K)
fraction of the cell volume].

The mass-conservation matrix equation is derived from a simplified form of the phasic
motion equations for liquid and gas. This is done to determine a 3D velocity distribution
that satisfies the source-connection fluid mass-flow boundary condition, conserves net
mass flow in each Vessel cell, and reasonably approximates the fluid flow pattern in the

Application Programming Interface Document
Rev. 0.4

Page 50

Vessel component. The temporal, momentum-convection, and gravity terms in the
motion equations are assumed to be zero, and the liquid and gas velocity distributions
are assumed to be the same. This simplifies the phasic motion equations to a single
approximate motion equation for each interface between cells and defines the cell-
interface fluid mass flow by

The cell-interface flow resistance is approximated by the sum of the form-loss and a
flow-length drag resistance. Laminar flow rather than turbulent flow is assumed so that
the cell-interface flow resistance is a constant rather than proportional to the magnitude
of the interface fluid velocity. The mass-conservation matrix equation requires that the
net coolant mass flow of each Vessel cell be zero:

Substituting the simplified motion-equation definition of fluid mass flow between Vessel
cells gives

c Ai - * (P n - P i) =
ithface Rl

where P, is the coolant pressure in Vessel cell n and Pi is the fluid pressure in
neighboring cell i on the other side of interface i. For a Vessel component with a total of
N cells, this is the Nth-order mass-conservation matrix equation

Because of fluid mass conservation over the entire Vessel component, as well as in each
of its N cells, the matrix equation has only N-1 unique equations and N pressure
unknowns. The Nth cell equation is replaced with the pressure-normalization
requirement PN = lo6 (in Pa units) to provide N unique equations. This arbitrary
normalization of the evaluated pressure distribution is done because the pressure
difference between cells, which determines the fluid mass flow across a cell interface, is
the result of interest being solved for. TRAC also checks that each Vessel cell has mass-
flow coupling to at least one of its six neighboring cells. Without such coupling, the
pressure solution in an isolated cell is arbitrary, causing the matrix solution to fail.

Vessel cell-interface fluid mass flows are determined by m = -AP . A/R based on the
above pressure-distribution solution. Evaluating their fluid velocities requires defining
and solving the fluid energy-conservation matrix equation to determine the gas void
fraction and phasic temperatures. Then the fluid density can be evaluated and the fluid
velocity determined from the fluid mass flow and donor-cell fluid density.

Application Programming Interface Document
Rev. 0.4

Page 51

The energy doniwd by the fluid mass flow is the product of the fluid mass flow and
enthalpy

The fluid energy conservation equation for each Vessel cell n is

[x m i . h n - z m i - i] = [cm ah- Em . h +PowDen.
out in n insodcori out'soucori 1 n

where

PowDen = [m h - xm - h] /(ma . (l O - l o , ~))
insodcon out'sodcod vessel

'olStr, I

if cell n is in the core region or Vessel (when ICRU = 0 and ICRL = 0) and is zero -
otherwise, and

VolStr, = Vol, , (1 - FRVOL,) ,

where Vol, is the volume of cell n and FRVOL, is the input-specified fluid volume
fraction of cell n.

A Vessel cell with energy flow out only through source connections defines an energy-
conservation equation that cannot be solved for the fluid enthalpy of the cell. TRAC
avoids this difficulty by using the cell enthalpy to define the outflow energy through
source connections. The above equation becomes

+ PowDen . VolStr, . [outsoucori out in n n
m - h n + ~ m i . h , - ~ m i . h i

For a Vessel component with N cells, this is the Nth-order fluid energy-conservation
matrix equation

which can be solved for the enthalpy distribution. The enthalpy of an isolated Vessel cell
with no mass flow coupling to its neighboring cells and without source connections is
arbitrary. TRAC avoids this by redefining its matrix-row equation in matrix to
require its enthalpy to equal the evaluated enthalpy in the cell above (below, if tbL. cell is
in the top level).

Application Programming Interface Document
Rev. 0.4

Page 52

The enthalp y-distribution solution is converted to gas-volume-fraction and phasic-
temperature distributions in the same manner as for 1D components. Two-phase gas
volume fractions are adjusted to conserve the fluid mass inventory input for each Vessel
component by the procedure described above for 1D components. m e n the donor-cell
fluid density is evaluated based on the gas volume fraction and phasic temperatures to
evaluate the interface velocity

from the interface mass flow and flow area.

All of the above evaluations for a Vessel component are performed in subroutine Ihpss3.
Array storage for the mass- and energy-conservation matrix equations is that already
reserved in the A array for the multiple-Vessel pressure matrix equation that is evaluated
during the outer-interative solution. See Sec. 2.4.8.2 of the TRAC Theory Manual3 for
further details concerning the thermal-hydraulic initialization of a Vessel component.

VI.4. The Radiation Model

This model is not currently installed in TRAC-M. Documentation will be provided after
its reinstallation.

REFERENCES

1.

2.

3.

4.

S. Jolly-Woodruff, J. Mahaffy, P. Giguere, J. Dearing, and B. Boyack, "Software
Design Implementation Document for TRAC-M Data Structures," Los Alamos
National Laboratory document LA-UR-97-3026 revised (October 1997).

N. M. Schnurr, R. G. Steinke, V, Martinez, and J. W. Spore, "TRAC-PFl/MOD2
Code Manual, User's Guide," US Nuclear Regulatory Commission report
NUREG /CR-5673 (July 1992).

J. W. Spore, S. J. Jolly-Woodruff, T. K. Knight, J-C. Lin, R. A. Nelson,
K. 0. Pasamehmetoglu, R. G. Steinke, and C. Unal, "TRAC-PFl/MOD2 Theory
Manual," Los Alamos National Laboratory document LA-12031-M (draft)
(July 21,1993).

R. G. Steinke, V. Martinez, N. M. Schnurr, J. W. Spore, and J. V. Valdez, "TRAC-P
User's Guide," Los Alamos National Laboratory document (draft) (August 1996).

Application Programming Interface Document
Rev. 0.4

Page 53

Application Programming Interface Document
Rev. 0.4

Page 54

APPENDIX A

SUBPROGRAM CALLING TREES

This appendix contains basic calling trees associated with TRAC-M to aid in the
understanding of both computational flow and the flow of data through the program.
Figure AS provides information on the branching at the highest levels of the program.
The remaining figures provide basic information on the trees for the key stages of the
program and breakouts of the component level trees for these stages where appropriate.
These stages, as outlined in Sec. I, and the associated figures are as follows:

1. Input of initial component data (e.g., Rpipe), Fig. A.2;

2. Input of restart information for a component (e.g./ Repipe), Fig. A.3;

3. Initialization of component-dependent variables (e.g., Ipipe), Fig. A.4;

4. Prepass(Prep), including the stabilizer momentum equation solution, evaluation
of various old-time quantities and other bookkeeping at the beginning of each
timestep (e.g., Pipel), Fig. AS;

5. Iterative solution of basic flow equations (Hout) for each timestep (e.g., Pipe2),
Fig. A.6;

6. Postpass (Post), including the solution of stabilizer mass and energy equations,
solution of the conduction equations, and other computations to complete each
timestep (e.g., Pipe3), Fig. A.7;

7. Output of data to the restart dump file (e.g., Dpipe), Fig. A.8;

8. Output of data to the XTV graphics files (e.g., Xtvpipe), Fig. A.9;

9. Output of data to the ASCII detailed edit file (e.g., Wpipe), Fig. A.10.

Application Programming Interface Document
Rev. 0.4

Page 55

INPUT i-' I

TIMCHK

PREP

GRAF

HOUT

POST

DMPIT

I PRElNPt

E-

I

TlMSTP

EDIT

XTVDR

OUTER

PSTEPQ

TRAC

I COMP

XTVlNlT

C m C L

IGRAF

I STEADY 1
TIMCHK

TIMSTP

GRAF

XTVDR -

I DMPIT I

Fig. A.1. Program TRAC calling tree.

Application Programming Interface Document
Rev. 0.4

I TRANS I

Page 56

SUBROUTINE I
RDCOMP

1 RTEE

1 RTURB

{ RPLEN

Fig. A.2.a. Top level of input deck processing (Rdcomp).

Application Programming Interface Document
Rev. 0.4

Page 57

SUBROUTINE RDCOMP
(BREAKOUT)

I

READ1

I RPUMP I

{ WlARN 1
{ THERMO I

ISCLTEJL t

I UNSVCB 1

I RTEE 1
[READIt-

READR

Fig. A.2.b. Breakout of top level of input deck processing (Rdcomp).

Application Programming Interface Document
Rev. 0.4

I WARRAY I

1 WlARN I
{ THERMO I

Page 58

SUBROUTINE RDCOMP
(BREAKOUT)

-
SI DPTR

LlNlNTO

l T H E R M O 4 -

I RBREAK I
I I

READ1

S1 DPTR

WRVLT

S1 DPTR

SCLTBL

LlNlNTO

WRVLT -
WMXYTB

SCLTBL

Fig. A.2.b. Breakout of top level of input deck processing (Rdcomp) (cont).

Application Programming Interface Document
Rev. 0.4

Page 59

SUBROUTINE RDCOMP
(BREAKOUT)

I I

1 I I 1
I

READ1

S1 DPTR

SCLTBL

LlNlNTO

UNSVCB

WMXVB

RCOMP

WRVLT
LOADN

WARRAY

WlARN

-

SCLTBL

WARRAY t WiARN
LOADN

WARRAY
WARRAY -
WlARN

THERM0

Fig. A.2.b. Breakout of top level of input deck processing (Rdcomp) (cont).

Application Programming Interface Document
Rev. 0.4

Page 60

SUBROUTINE 1 1 1
RSTVLT BFlN

Fig. A.3. Top level of restart input (Rdrest).

Application Programming Interface Document
Rev. 0.4

INlT

ICOMP XTVlNlT XTVDR CXTVOW CXNCL CXTVCL -

Fig. A.4. Top level of data initialization input (Init).

Application Programming Interface Document
Rev. 0.4

Page 62

I I I I

CBSET PUMP1

VLVEl
TRPSET

BREAK1

TURBl

HTSTRL 7
RADMODl

RVSLCM

VSSLl

Fig. A.5.a. Top level of solution prepass (Prep).

Application Programming Interface Document
Rev. 0.4

Page 63

I SUBROUTINE PREP
(Breakout)

I
PREPlD Lr' I PIPE1

1 BKMOM I

1 SAVBD 1 LH FEMOM
I-

Fig. A.5.b. Breakout of top level of solution prepass (Prep).

Application Programming Interface Document
Rev. 0.4

Page 64

I SUBROUTINEPREP I
(Breakout)

PREP1 D P
PUMP7

BKMOM F-7
SAVBD -P
PREPER

- TRIP

4 7 1 - EVLTAB
LlNlNT

PUMPD
FEMOM 1 PUMPX GETCRV

1 WALL I - EVLTAB LININT

{ MPROP I
4 PUMPSR

HTPIPE HTCOR

{ ~ FLUX 1

Page 65

SUBROUTINE PREP
(Breakout)

TBC1

EVFXXX TEElX

JBD4
W A L L

PREPER
MPROP

- 1

HTCOR HTPIPE

SETBD

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont).

Application Programming Interface Document
Rev. 0.4

Page 66

(Breakout)

VLVE1

VLVEX 9
SHlFTB

PREPER

FEMOM

PUMPSR
FGl.h=l

I

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont).

Application Programming Interface Document
Rev. 0.4

Page 67

I SUBROUTINEPREP I
(Breakout)

BREAK1 w
BREAKX

H SHlFTB

LlNlNTO

,+,

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont).

Application Programming Interface Document
Rev. 0.4

Page 68

I SUBROUTINEPREP I
(Breakout)

I

FILL1 0
,&,

EVLTAB
TRIP

I

EVLTAB
TRIP

I

SHIFTB
LIN I NTO

THERM0
FPROP

MIXPRP

+,

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont).

Application Programming Interface Document
Rev. 0.4

Page 69

I SUBROUTINEPREP 1
(Breakout)

I
PREP1 D

I
I

I

SAVBD

HTPIPE FEMOM

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont).

Application Programming Interface Document
Rev. 0.4

Page 70

I SUBROUTINEPREP I
(Breakout) ," PREP1 D

1 VOLV 1-
I WALL I-
pGG-MpRop-

GETCRV HTPIPE -

VI)_

I BKMOM f

I SAVBD 1
pi-

-1 PREPER c
I SEPDX I

JBD4 EVFXXX

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont).

Application Programming Interface Document
Rev. 0.4

Page 71

I SUBROUTINE PREP

-
FLUX

-

(Breakout)
I

LlNlNT
- GETCRV

PUMPD -

TURB1 Q

+GG-l -

I I -

LlNlNT

PREPER

EVFXXX

PLEN1 I

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont).

Application Programming Interface Document
Rev. 0.4

Page 72

SUBROUTINE PREP
(Breakout)

I
HTSTRl

I CORE1

HTSTRV a
MPROP El

HWEBB

I SHRINK t

4 ZCORE

I RFDBK t

I

4 MFROD 1
1 FNMESH I

1 RKlN I

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont).

Application Programming Interface Document
Rev. 0.4

Page 73

1 SUBROUTINEPREP I
(Breakout)

PREP30

VSSL1

DVPSCL

IFSET

LlNlNTO

CIF3

FEMOMX

FEMOMZ

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont).

Application Programming Interface Document
Rev. 0.4

Page 74

1 SUBROUTINE 1
HOUT

/OUTER/
I

OUT1 D 6
SGEFAT

I I

{ WCOMP 1
TRBPST RDPTRS

PIPE3
PUMP3

PLEN3

SGEFAT

HTSTR3

Fig. A.6.a. Top level of solution outer iteration (Hout).

Application Programming Interface Document
Rev. 0.4

Page 75

1 SUBROUTINE HOUT
(BREAKOUT)

- CELLAV

T F l D S l

TFIDS

THERMO

CELLAV -
HTlF -

-
-
-

0 N1123C

T F l D -
J1D

T F l D S l

TFlDS

TFlDS3

THERMO T F l D -- ON1123G -
CELLAV

1 TFlD -
HTlF

J l D -
TFlDSl

-

- -
{T -.

-.
-.

EV Fxx - TEE1

C ELLAV - ON1123C - . SEPDl - -
HTlF - -- INNER TEE2 T F l D

J1D

-
- TFlDS1 - -

TFlDS -
TFlDS3 -

J1D BRE AK2

TFlD

J1D

-

TF1 DS1
P LEN2

Fig. A.6.b. Breakout of top level of solution outer iteration (Hout).

Application Programming Interface Document
Rev. 0.4 Page 76

TF1DS3 I

SUBROUTINE HOUT
(BREAKOUT)

I OUT3D I
TF3DS3

- VSSSSR

-_ SETBDT
RVSLCM VSSL2

MATSOL

Fig. A.6.b. Breakout of top level of solution outer iteration (Hout) (cont).

Application Programming Interface Document
Rev. 0.4

Page 77

SUBROUTINE HOUT
(BREAKOUT)

I-)--(W E E

WCOMP a
TRIP

ECOMP
14 WPUMP

ECOMP

UNSVCB
WTURB

WPLEN WHTSTR

Fig. A.6.b. Breakout of top level of solution outer iteration (Hout) (cont).

Application Programming Interface Document
Rev. 0.4

Page 78

1 SUBROUTINE HOUT
(BREAKOUT)

i
PIPE3 PUMP3

SAVBD CONSTB SAVBD CONSTB

- THERMO
- BKSSTB EVFXXX POSTER

- THERMO
POSTER - BKSSTB EVFXXX

- CYLHT CYLHT -
- POWINT
- FPROP

SETBD I SETBD EVALDF I

SUBROUTINE HOUT
(BREAKOUT)

1 VLVEB I

- THERM0
- BKSSTB FOSTER

THERM0

FFROP

I FILL3

Fig. A.6.b. Breakout of top level of solution outer iteration (Hout) (cont).

Application Programming Interface Document
Rev. 0.4

Page 80

.

SUBROUTINE HOUT
(BREAKOUT)

BKSSTB -
CYLHT - POSTER SETBD
POWINT 7

POSTER EVFXXX

OFFTKE SETBD

EVALDF

THERM0

CYLHT

FPROP

Fig. A.6.b. Breakout of top level of solution outer iteration (Hout) (cont).

Application Programming Interface Document
Rev. 0.4

Page 81

BKSSTB

1 SUBROUTINE HOUT
(BREAKOUT)

3* TURB3

CONSTB

POSTER SETBD

THERMO

FPROP ASTPLN

STBMPL BDPLEN

Fig. A.6.b. Breakout of top level of solution outer iteration (Hout) (cont).

Application Programming Interface Document
Rev. 0.4

Page 82

SUBROUTINE'HOUT
(BREAKOUT)

1 POST I
I

BAKUP
THERM0
FPROP

POST3D

RVSLCM -
BKSTB3
MIX3D

FPROP
EVALDF
GVSSL2
BKSTB3

STBME3

HTSTR3

CORE3

Fig. A.6.b. Breakout of top level of solution outer iteration (Hout) (cont).

Application Programming Interface Document
Rev. 0.4

Page 83

I SUBROUTINE I
POST CONSTB -

SAVBD -
NFXXX -
POSTER -

- CONSTB

- SAVBD

- EVFXXX

TRBPST

RDPTR
SETBD -
NALDF -

- POSTER PIPE3

I L PUMP3 SETBD -- - - u -
-

CONSTB

SAVBD
SAVBD TEE3 -
EVFXXX -

- EVFXXX

POSTER

POSTER

OFFTKE

SETBD

EVALDF EVALDF

THERM0 PLEN3

BKSPLN
-

-
RVSLCM

J3D

RVSLCM

VSSL3

MATSOL

POST3D -
-

POSTER

HTSTR3

Fig. A.7.a. Top level of solution postpass solution (Post).

Application Programming Interface Document
Rev. 0.4

Page 84

SUBROUTINE POST
(BREAKOUT)

PIPE3 Y
STBME

ri POSTER

POWINT

Fig. A.7.b. Breakout of top level of postpass solution (Post).

Application Programming Interface Document
Rev. 0.4

Page 85

SUBROUTINE POST
(BREAKOUT)

STBME ks:
POSTER

BKSSTB D

FPROP

Fig. A.7.b. Breakout of top level of postpass solution (Post) (cont).

Application Programming Interface Document
Rev. 0.4

Page 86

SUBROUTINE POST
(BREAKOUT)

I
~CONSTB 1

STBME

POSTER 6

Fig. A.7.b. Breakout of top level of postpass solution (Post) (cont).

Application Programming Interface Document
Rev. 0.4

Page 87

SUBROUTINE POST
(BREAKOUT)

TURB3 w
CONSTB i?

STBME

,&,
I

Fig. A.7.b. Breakout of top level of postpass solution (Post) (cont).

Application Programming Interface Document
Rev. 0.4

Page 88

SUBROUTINE POST
(BREAKOUT)

I

VSSL3

BAKUP THERM0

FPROP BKSTB3

GVSSL2 BKSTB3

STBME3

Fig. A.7.b. Breakout of top level of postpass solution (Post) (cont).

Application Programming Interface Document
Rev. 0.4

Page 89

SUBROUTINE POST
(BREAKOUT)

FROD

Fig. A.7.b. Breakout of top level of postpass solution (Post) (cont).

Application Programming Interface Document
Rev. 0.4

Page 90

I SUBROUTINE I
DMPlT

I

I BFOUT 1
I DTEE }

I DFlLL 1 1 DCOMP I

Typical of other
components

Fig. A.8. Output of restart data (Dmpit).

Application Programming Interface Document
Rev. 0.4

Page 91

SUBROUTINE
XTVDR

Page 92

I RDPTRS

ECOMP W E E

ECOMP WFILL

ECOMP W E E

RVSLCM -I CWVSSL

WPRIZR ECOMP

4 WVLVE H ECOMP I

Fig. A.10. Detailed output (Edit).

Application Programming Interface Document
Rev. 0.4

Page 93

Application Programming Interface Document
Rev. 0.4

Page 94

APPENDIX B

SUBPROGRAM DATA INTERFACES

The full data interface for a given subprogram includes variables passed through the
argument list, variables from cornmon blocks and modules used, and variables available
as global variables in a module that contains the subprogram. The description of this full
interface for all subprograms is a very lengthy process and becomes obsolete as the
program evolves. Rather than provide this description directly, we have elected to save
space and maintain flexibility with a different approach. Definitions of variables are
provided in App. C or, in special cases, in the subroutine headers themselves. Lists of
communicating variables and their paths of communication are generated with a special
program (datainfo). Source code for the program and results from executing it with the
latest version of TRAC-M are provided on an attached disk.

B.l. Using the Program

The program (datainfo) was designed for more general use than simply TRAC analysis
and should be supported by a driving script for most convenient use. It must be
executed within the directory containing all source code to be processed and requires a
subdirectory named VarInfo. The program reads a file named DoFiles that must be
created in VarInfo to obtain a list of files to be processed. For the most basic usage, which
is analyzing the communications for a full program, the steps are fairly simple. Tlefore
the first such analysis, the source code has been compiled to create an executable named
"datainfo", and this executable has been in a directory contained in the PATH
environment variable. First, change into the directory containing all source code, and
make the necessary subdirectory:

mkdir VarInfo

Next, create the list of files to be processed by redirecting the output from the list
command:

Is *.f * .BO *.h >! VarInfo/Dofiles

Either the "*.f" or "*.f90N can be skipped in the above command if it is not appropriate.
Now the communications analysis can be performed by typing:

datainfo

When the program has completed execution, the ".info" files generally will be removed,
and single files with all information on communicating variables may be created.
Execute the following commands:

cd VarInfo
rm *.info
cat *.hdr > full.hdr

Application Programming Interface Document
Rev. 0.4

Page 95

The file ”full.hdr” will be very long for a code like TRAC-M. Check the size and
consider the consequences before sending it to a printer.

B.2, Description of the Program ”datainfo”

Initial processing is driven by the subroutine “getlines” and results in the creation of
intermediate files with the suffix ”.info” (left in VarInfo), containing information on all
communicating variables defined in program units or include files. The prefix of these
intermediate file names is the name of the program unit, or include file. In addition, it
creates a file in VarInfo named FileList, containing a list of all files containing source code
to be processed for final information on communication interfaces.

-

The subroutine ”mkHeaders” drives the final creation of header files containing a
description of each variable communicating information into or out of a given
subprogram. Final documentation is structured as header information for the
subroutine or function-listing variables providing input to the subprogram, variables
carrying output, and variables that are contained in the argument list of a called
subroutine. Thus, these could be either input or output. This program currently does
not iterate over subprograms to determine the true input/output status of such
variables. Zn addition, the program may be unable to track the true input or output
functionality of a variable when conditional branches are present. However, it produces
warnings in such cases. Files containing this header information have a prefix matching
the subprogram name and a suffix of ”.hdr”. The processing operates under the
following restrictions and assumptions that

EQUIVALENCES are not processed;

Not all changes to variable values caused by optional arguments such as “read =I’

in INQUIRE are detected;

The program being processed must successfully compile under Fortran 90;

The ONLY attribute is not applied in a USE statement, nor is the rename feature
applied;

No variables in the MODULE are PRIVATE.

The program “datainfo” was tested in three ways. For each identified class of statements
to be processed, a sample statement was inserted into one member of a set of test files
and the names of these files placed in ”DoFiles”. As a second-level test, the source of
”datainfo” was processed by ”datainfo”. This tested the processing of a fairly rich mix of
Fortran 90. Results were carefully reviewed based on recent knowledge of the program.
As a final step, the communications analysis was applied to Version 2.40 of TRAC-M.
Too much information was generated for a thorough analysis of results. This test simply
checked for fatal errors in ”datainfo” and for obviously bad results for randomly
sampled TRAC subprograms.

Application Programming Interface Document
Rev. 0.4

Page 96

The existence of full source code for this tool permits adaptation to future needs with
relative ease. Recommended changes include complete coverage of optional arguments
to I/O statements such as INQUIRE, accommodation of USE options and PRIVATE
variables, and an option to continually determine the status of variables found in Call
statements. Additions to improve processing of usage within conditional statements are
possible but require a higher investment of time. The subroutines outHeader and outVar
should be replaced (or supplemented) by subroutines producing equivalent HTML files.
This would provide cleaner formatting of the results within documents and would open
the option for a browser-based document with links to variable definitions and to
associated source code.

Application Programming Interface Document
Rev. 0.4

Page 97

Application Programming Interface Document
Rev. 0.4

Page 98

APPENDIX C

VARIABLE NAMES

C.1. Standard 1D Array Variable Names

The following list provides the standard variable name [the spatial location (cell center
or cell edge)], and a definition of the variable. Variables in or passed from geometry and
fluid-state arrays follow a fairly standard naming convention.

One naming convention worth noting is the use of "v". This dates to a time when steam
vapor was the only gas followed in a TRAC calculation. Now, mixtures of vapor and
noncondensable gas are possible, and variables using this "v", unless otherwise stated,
apply to the total gas mixture. Another convention that must be treated with caution is
the pattern for new- and old-time variables. When variables ending with 'Inr' (e.g., pn,
alpn, tln, or tvn) are present, variables with the root name (e.g., p, alp, tl, or tv) are
evaluated at the old time. However, in many low-level subroutines, only the root name
appears, and no inference should be made about the time level.

-

Additional confusion in the time level was introduced during the evolution of TRAC. In
rare cases, the root name (vlt, wt, hig, hil, or cppc) refers to the new-time value, and the
addition of the suffix "or' denotes old-time values. Much of this problem has been
eliminated through the Dual-derived type (see Section C.2) +However, some 1ocaEusage
of this "0" convention persists and has been marked for future elimination.

-

Variable

alpmn

alpmx

alpn
alp0
alv

alve

alven

alvn

am
ara

aran

alp
Location
Center
Center

Center

Center
Center
Center

Center

Center

Center

Center
Center

Center

Definition
Old void fraction.
Minimum value of void fraction among a cell and all -of its
neighbors.
Maximum value of void fraction among a cell and all of its
neighbors.
New void fraction.
Void fraction at the start of the previous step (step n-1).
Product of the old flashing interfacial HTC and the interfacial
area.
Product of the old liquid-side interfacial HTC and the
interfacial area.
Product of the new liquid-side interfacial HTC and the
interfacial area.
Product of the new flashing interfacial HTC and the
interfacial area.
Noncondensable gas mass.
Old stabilizer value for macroscopic noncondensable gas
density ("Da) .
New stabilizer value for macroscopic noncondensable gas
density ("Da).

Application Programming Interface Document
Rev. 0.4

Page 99

arc
are1
areln
arev
arevn
rtrl
arln
am
a m
bit
bitn
chtan

chti

chtia

chtin

cif
cifn
cl
conc
concn

Cpv

dalva

dfldp
dfvdp
dhldz
dr
dx
ea
ean
el
elev
eln
ev
evn
fa
favol
finan

fric

Cpl

cv

Center
Center
Center
Center
Center
Center
Center
Center
Center
Either
Either
Center

Center

Center

Center

Edge
Edge
Center
Center
Center
Center
Center
Center
Center

Edge
Edge
Edge
Center
Center
Center
Center
Center
Center
C -.?er
c - - _ a

C.::e5:
Edge
Center
Center

Edge

Solute macroscopic density: (l-”)Di c .
Old stabilizer value for (l-”)Diei.
New stabilizer value for (l-”)Diei.
Old stabilizer value for ”Dgeg.
New stabilizer value for ”Dgeg.
Old stabilizer value for (1-”1 Di (macroscopic liquid density).
New stabilizer value for (l-”)Di.
Old stabilizer value for ”Dg (macroscopic gas density).
New stabilizer value for “Dg .
Bit flags from previous timestep.
Bit flags for current timestep.
New value of noncondensable gas interfacial HTC times
current volume interfacial area.
Old value of vapor-side interfacial HTC times current
volume interfacial area.
Old value of noncondensable gas interfacial HTC times
current volume interfacial area.
New value of vapor-side interfacial HTC times current
volume interfacial area.
Old interfacial drag coefficients.
New interfacial drag coefficients.
Liquid conductivity.
Old-solute-mass-to-coolant-mass ratio.
New-solute-mass-to-coolant-mass ratio.
Liquid specific heat at constant pressure.
Gas specific heat at constant pressure.
Gas conductivity.
Derivative of alv with respect to void fraction (currently
always set to zero).
Derivative of liquid velocity with respect to pressure.
Derivative of gas velocity with respect to pressure.
Gravitational head force caused by void gradient.
Storage array for thermodynamic derivatives and enthalpies.
Cell length in flow direction.
Old noncondensable gas-specific internal energy.
New noncondensable gas-specific internal energy.
Old liquid-specific internal energy.
Cell-centered elevations.
New liquid-specific internal energy.
Old gas-specific internal energy.
New gas-specific internal energy.
Cell-edge flow area.
Cell-centered flow area.
Inverted annular regime weighting factor (currently not
used).
Additive friction factors (generally for form losses).

Application Programming Interface Document
Rev. 0.4

Page 100

fsmlt
gam
ga-
grav

gravol
hd
hdht
l-45

hig
higo
hil
hilo
h i V
hivo
hla
hlatw

hva
hvatw

idr
lccfl
matid
nff
P
Pa
Pan
Pn

WPC
WPCO
WPP
regMl
rhs

rmvm
roa
roan
rol
roln
rom
rov
rovn

w3f

-
Center
Center
Center
Edge

Center
Edge
Center
Center
Center
Center
Center
Center
Center
Center
Center
Center
Center

Center
Center

Center
Edge
Center
Edge
Center
Center
Center
Center
Center
Center
Center
Edge
Edge
Center

Edge
Center
Center
Center
Center
Center
Center
Center

Interphasic area multiplier during condensation.
Old vapor generation rate per unit volume.
New vapor generation rate per unit volume.
Gravitation terms (cosine of the angle between the direction
of increasing cell index and a vector directed vertically
upward).
Cell-averaged inclination cosine.
Hydraulic diameters.
Heat-transfer hydraulic diameters.
Latent heat of vaporization.
Contribution to phase change from subcooled boiling.
New HTC between inside wall and noncondensable gas.
Old HTC between inside wall and noncondensable gas.
New HTC between inside wall and liquid.
Old HTC between inside wall and liquid.
New HTC between inside wall and vapor.
Old HTC between inside wall and vapor.
Sum of all products of liquid HTC with heat-transfer area.
Similar to HLA, except that the product includes wall
surface temperature.
Sum of all products of vapor HTC with heat-transfer area.
Similar to HVA, except that the product includes wall
surface temperature.
Heat-transfer regime.
CCFL flag.
Structural material identifications.
Wall friction-correlation options.
Old total pressure.
Old noncondensable gas partial pressure.
New noncondensable gas partial pressure.
New total pressure.
QPPP factor applied to the wall heat source.
New CHF.
Old CHF.
Profile of the wall volumetric heat source.
Flow-regime number.
Storage for SETS weighting factor xvset (amount of cell-
centered implict mass or energy flux).
Mixture density times mixture velocity.
Old noncondensable gas density.
New noncondensable gas density.
Old liquid density.
New liquid density.
Mixture density (old time level).
Old gas density (steam plus noncondensable gas).
New gas density.

Application Programming Interface Document
Rev. 0.4

Page 101

rvmf

sidx
sig
sn
tl
tln
trid
tsat
tssn
tv
tvn
tw
twn
vis1
visv
vl
vlalp

Vln
vlt
vlto
vlvc

vlvol
vm

vol
vr

S

VIYUI

VlV
W
vvn
w t
vvto
VVVOL
wa

wat

Wfhf
Wfl
WfV

Edge
Center
Edge
Center
Center
Center
Center
Either
Center
Center
Center
Center
Center
enter
Center
Center
Edge
Center

Edge
Edge
Edge
Center

Center
Edge
Edge
Center
Edge
Center
Edge
Edge
Edge
Edge
Center
Center

Center

Edge
Edge
Edge

Gas mass flow.
Old solute mass plated on structure.
Stratified interfacial area.
Surface tension.
New solute mass plated on structure.
Old liquid temperature.
New liquid temperature.
Storage for stabilizer linear system.
Saturation temperature at the total pressure.
Saturation temperature for steam pressure.
Old gas temperature.
New gas temperature.
Old wall temperatures.
New wall temperatures.
Liquid viscosity.
Gas mixture viscosity.
Old liquid velocity.
Liquid mass flux that enters the cell from the cell edges
located above the cell.
New liquid velocity.
New stabilizer liquid velocity.
Old stabilizer liquid velocity.
Liquid velocity at a neighboring cell edge where the
donor-celled liquid fraction is maximum.
Cell-centered liquid velocity.
Old mixture velocity.
New mixture velocity.
Cell volume.
Relative velocity.
Cell-averaged relative velocity.
Old gas velocity.
New gas velocity.
New stabilizer gas velocity,
Old stabilizer gas velocity.
Cell-centered gas velocity.
Wall area in the current volume for component wall heat
transfer.
Total heat-transfer area in the current volume associated with
heat structures.
Weighting factor for stratified-flow regime.
Wall friction factor for liquid.
Wall friction factor for gas.

Application Programming Interface Document
Rev. 0.4

Page 102

C.2. Dual-Derived-Type Component Arrays

The following variables are allocated array pointers in the derived type containing
information that are must be stored at both new- and old-time levels on each timestep
for 1D components. Note that this group contains one anomaly. The variable tw
interacts with the fluid as a surface wall temperature, but is a 2D array containing all
temperatures associated with any wall conduction calculation. For the jth fluid cell,
tw(1,j) provides the wall surface temperature for heat transfer to the fluid cell center.
This convention is different from that used in the heat-structure component, where the
structure temperature array aligns with the edges of the fluid cells.

Variable

alv

alve

alp

ara

are1
arev
arl
arv
bit
chti

chtia

cif
conc
ea
el
ev

h i V

P
Pa
WPC
roa
rol
rov
S
tl
tv

Location
Center
Center

Center

Center

Center
Center
Center
Center
Either
Center

Center

Edge
Center
Center
Center
Center
Center
Center
Center
Center
Center
Center
Center
Center
Center
Center
Center
Center
Center

Definition
Void fraction.
Product of liquid-side flashing interfacial HTC and interfacial
area.
Product of liquid-side evaporation interfacial HTC and
interfacial area.
Stabilizer value for "Da. (macroscopic noncondensable gas
density).
Stabilizer value for (l-")Diei.
Old stabilizer value for "Dgeg.
Old stabilizer value for (l-")Di (macroscopic liquid density).
Old stabilizer value for "Dg (macroscopic gas density).
Bit flags from previous timestep.
Product of vapor-side interfacial HTC and current volume
interfacial area.
Product of noncondensable gas interfacial HTC and current
volume interfacial area.
Interfacial drag coefficients.
Solute-mass-to-coolant-mass ratio.
Noncondensable gas specific internal energy.
Liquid-specific internal energy.
Total gas-specific internal energy.
Vapor generation rate per unit volume.
HTC between inside wall and noncondensable gas.
HTC between inside wall and liquid.
HTC between inside wall and vapor.
Total pressure.
Noncondensable gas partial pressure.
CHF.
Noncondensable gas density.
Liquid density.
Gas density (steam plus noncondensable).
Solute mass plated on structures.
Liquid temperature.
Gas temperature.

Application Programming Interface Document
Rev. 0.4

Page 103

tw

vl
vlt
vm

w t
w

Center

Edge Liquid velocity.
Edge Stabilizer liquid velocity.
Edge Mixture velocity. ~

Edge Gas velocity.
Edge Stabilizer gas velocity.

Wall temperatures aligned with the center of the fluid cells
but with the edge (node) of the radial conduction cells.

C.3. HydrolD-Derived-Type Component Arrays

The following variables are allocated array pointers in the derived type containing
variables that are defined only once (or once in a timestep) for 1D components. They are
grouped by those associated with the fluid and those associated with the embedded heat
structure (pipe wall).

Variable
alpmn

alpmx

alp0

arc
cl

Cpv

dalva

am

Cpl

cv

dfldp
dfvdp
dhldz

dr

Location
Center

Center

Center
Center
Center
Center
Center
Center
Center
Center

Edge
Edge
Edge

Center

deldp

deldt

devat

devap

devdp

Definition
Minimum value of void fraction among a cell and all of its
neighbors.
Maximum value of void fraction among a cell and all of its
neighbors.
Void fraction at the start of the previous step (step n-1).
Noncondensable gas mass.
Solute macroscopic density: (l-”)Di c .
Liquid conductivity.
Liquid specific heat at constant pressure.
Gas specific heat at constant pressure.
Gas conductivity.
Derivative of alv with respect to void fraction (currently
always set to zero).
Derivative of liquid velocity with respect to pressure.
Derivative of gas velocity with respect to pressure.
Gravitational head force caused by void gradient.

Derived-type array for thermodynamic derivatives and
enthalpies. Type components are:
Partial derivative of liquid-specific internal energy with
respect to total pressure (temperature held constant).
Partial derivative of liquid-specific internal energy with
respect to temperature (total pressure held constant).
Partial derivative of noncondensable gas-specific internal
energy with respect to temperature (total pressure held
constant).
Partial derivative of noncondensable gas-specific internal
energy with respect to pressure (temperature held constant).
Partial derivative of gas-specific internal energy with respect
to total pressure (temperature held constant).

Application Programming Interface Document
Rev. 0.4

Page 104

dx
elev
fa
favol
finan

fric
fsmlt
grav

gravol
hd
hdht

hgam
hla

hlatw

hfg

devdt

dhlsp

dhvsp

drolp

drolt

drovp

drovt

drvap

drvat

dtsdp

dtssp

hlst
hvst

Center
Center
Edge
Center
Center

Edge
Center
Edge

Center
Edge
Center
Center
Center
Center

Center

Partial derivative of gas-specific internal energy with respect
to temperature (total pressure held constant).
Derivative of liquid-specific saturation enthalpy with respect
to pressure, evaluated at the total pressure.
Derivative of steam-specific saturation enthalpy with respect
to pressure, evaluated at the steam partial pressure.
Partial derivative of liquid density with respect to total
pressure (temperature held constant).
Partial derivative of liquid density with respect to
temperature (total pressure held constant).
Partial derivative total gas density with respect to pressure
(temperature held constant).
Partial derivative of total gas density with respect to
temperature (total pressure held constant).
Partial derivative of noncondensable gas density with respect
to pressure (temperature held constant).
Partial derivative of noncondensable gas density with respect
to temperature (pressure held constant).
Derivative of saturation temperature with respect to
pressure, evaluated at the total pressure.
Derivative of saturation temperature with respect to
pressure, evaluated at the steam partial pressure.
Liquid-specific enthalpy, evaluated at the total pressure.
Steam-specific enthalpy, evaluated at the steam partial
pressure.

Cell length in flow direction.
Cell-centered elevations.
Cell-edge flow area.
Cell-centered flow area (volume divided by cell length).
Inverted annular regime weighting factor (currently not
used).
Additive friction factors (generally for form losses).
Interphasic area multiplier during condensation.
Gravitation terms (cosine of the angle between the direction
of increasing cell index and a vector directed vertically
upward).
Cell-averaged inclination cosine.
Hydraulic diameters.
Heat-transfer hydraulic diameters.
Latent heat of vaporization.
Contribution to phase change from subcooled boiling.
Sum of all products of liquid HTC with heat-transfer area
over all heat-structure components connected to a cell.
Similar to HLA, except that the product includes wall surface
temperature.

Application Programming Interface Document
Rev. 0.4

Page 105

hva

hvatw

lccfl
nff
r e v
rhs

mvm
rom
.rvmf
sidx
sig
trid
tsat
tssn
vis1
visv
vlalp

vlvc

vlvol
vol
vr

vwol
wfhf

Wfl
WfV

Vflr

Center

Center

Edge
Edge
Edge
Center

Edge
Center
Edge
Edge
Center
Either
Center
Center
Center
Center
Center

Center

Center
Center
Edge
Center
Center
Edge

Edge
Edge

Sum of all products of vapor HTC with heat-transfer area
over all heat-structure components connected to a cell.
Similar to HVA, except that the product includes wall surface
temperature.
CCFL flag.
Wall friction-correlation options.
Flow-regime number.
Storage for SETS weighting factor xvset (amount of cell-
centered implict mass or energy flux).
Mixture density times mixture velocity (mass flux).
Mixture density.
Gas mass flow.
Stratified interfacial area.
Surface tension.
Storage for stabilizer linear system.
Saturation temperature.
Saturation temperature for steam pressure.
Liquid viscosity.
Gas viscosity.
Liquid mass flux that enters the cell from the cell edges
located above the cell.
Liquid velocity at a neighboring cell edge where the donor-
celled liquid fraction is maxi1,iun.
Cell-centered liquid velocity.
Cell volume.
Relative velocity.
Cell-averaged relative velocity.
Cell-centered gas velocity.
Weighting factor for stratified-flow regime (1.0 is fully
stratified).
Wall friction factor for liquid.
Wall friction factor for gas.

The following variables are associated with conduction from a heat structure directly
associated with the component (pipe wall). Variables cpw, cw, matid, drw, rn, and rn2
are assumed to be constant along the length of the 1D component and are associated
only with ”nodes-1” conduction cell centers or, in the case of rn2, “nodes” conduction
cell edges. Variables cppp and row can vary throughout the conduction mesh. They are
associated with the conduction cell edge and center, respectively, and both align with the
center of the fluid cells. The remaining variables vary only along the length of the 1D
component and are alligned with the center of the fluid cells (dimensioned ncells).

Application Programming Interface Document
Rev. 0.4

Page 106

Variable

cpw

matid
drw
emis
hol
hov
idr

9pPP

cw

V3f

rn

m2
row

tchf
to1

tov

wa

wat

Location

Center
Center
Center
Center
Center
Center
Center
Center
Center

*.

Edge

Center
Center

Center
Center

Center

Center

Center

Definition

Specific heat of wall material.
Wall conductivity.
Strucixral material identifications.
Radial mesh size.
Wall emissivity.
HTC between outside wall and liquid.
HTC between outside wall and vapor.
Heat-transfer regime (integer).
QPPP factor applied to the wall heat source.
Profile of the wall volumetric heat source, values for each
combination of conduction cell edge and fluid cell center.
Radii at the wall radial conduction cell edges (locations of
temperatures).
Radii at wall conduction cell centers.
Material density at the center of each (ncells*(nodes-1)) wall
conduction cell.
CHF temperature, one for each hydro cell.
Liquid temperature outside wall. Exterior boundary
condition for each hydro cell.
Vapor temperature outside wall. Exterior boundary
condition for each hydro cell.
Wall area in the current volume for component wall heat
transfer.
Total heat-transfer area in the current volume associated with
heat structures.

C.Vpecial1D Shared Scalar Data-Module OneDDatM

REAL Variables

alpst

ardmin

arn

ary

cla

The primary leg fluid void fraction to be convected into the Tee component
side leg by the Tee offtake model (located at cell number "jcell").
Minimum value of the difference between the flow-area ratios one mesh-cell
distance from a junction interface, with a Plenum component, and at the
junction interface with a Plenum component for flow from the Plenum
component.
No factor for applying flow-area ratios in the momentum-convection term.

0.0 = apply area ratios,
1.0 = do not apply area ratios.

1.0 = apply area ratios,
0.0 = do not apply area ratios.

Yes factor for applying flow-area ratios in the momentum-convection term.

Fraction of liquid velocity at the left face of the Tee primary-leg junction cell
that contributes to the momentum transfer into the Tee side leg.

Application Programming Interface Document
Rev. 0.4

Page 107

clav

c2a

c2av

d

C t P

dvjP

fll

fl2

fljp

fljs

fv l

fv2

havlv
qtp

so1

so2

salt

savt

ssac
sse
ssmc
ssmom

ssve
ssvc

vjs

Vapor velocity fraction at the left face of the Tee primary-leg junction cell that
contributes to the momentum transfer into the Tee side leg.
Fraction of liquid velocity at the right face of the Tee primary-leg junction cell
that contributes to the momentum transfer into the Tee side leg.
Vapor velocity fraction at the right face of the Tee junction cell that contributes
to the momentum transfer into the Tee side leg.
Cosine of the angle between the low numbered segment of the primary leg
and the secondary leg, unless the cosine is positive, in which case Ct is zero.
Cosine of the angle between the low numbered segment of the primary leg
and the secondary leg, unless the cosine is negative, in which case Ct is zero.
Derivative of the pump (or turbine) momentum source term with respect to
fluid velocity (assumes homogeneous flow).
Temporary storage for liquid mass-flow corrections for mass-conservation
checks at low-numbered cell face (component junction).
Temporary storage for liquid mass-flow corrections for mass-conservation
checks at high-numbered cell face (component junction).
K-factor turning plus abrupt flow-area change loss times the side-leg
RHO*FA*Vh4**2 at a Tee internal junction that is to be assigned to the
primary-side interfaces that flow into Jcell.
FRIC turning plus abrupt flow-area change loss at a Tee internal junction that
is to be assigned to the side-leg internal-junction interface.
Temporary storage for vapor mass-flow corrections for mass-conservation
checks at low-numbered cell face (component junction).
Temporary storage for vapor mass-flow corrections for mass-conservation
checks at high-numbered cell face (component junction).
Temporary storage for the hydraulic diameter when the valve is open.
Direct energy deposited per unit length in the current 1D section during the
current timestep.
Factor (+1 or -1) necessary to make the velocity at the low-numbered cell face
match the velocity in the component evaluating the momentum equation for
that component junction.
Factor (+1 or -1) necessary to make the velocity at the high-numbered cell face
match the velocity in the component evaluating the momentun-t equation for
that component junction.
Source term to liquid for compressible work to the primary cell with a Tee
junction.
Source term to vapor for compressible work to the primary cell with a Tee
junction.
Air mass source to the primary cell with a Tee junction.
Total energy (liquid plus gas) source to the primary cell with a Tee junction.
Total mass source to the primary cell with a Tee junction.
Momentum source to cell face msc from a pump or turbine component.
Gas mass source to the primary Cell with a Tee junction.
Gas energy source to the primary cell with a Tee junction.
Mean velocity at the Tee-side-leg face joining to the primary (not used).

Application Programming Interface Document
Rev. 0.4

Page 108

INTEGER Variables

io1

io2

io3

iacc2
ibks

icme

il
iphsep

isflg
islb
isrb

ivpvlv
jstart
lpindx

msc

nc2
njn
nstg
ntee

Index to the Network matrix and Network variable array providing the
Network equation and variable at the junction adjacent to the current
component’s low-numbered cell. Zero if no network equation exists at that
junction.
Index to the Network matrix and Network variable array providing the
Network equation and variable at the junction adjacent to the current
component’s high-numbered cell. Zero if no network equation exists at
that junction.
Index to the Network matrix and Network variable array providing the
Network equation and variable at the junction between a Tee primary and
secondary side. Zero if there is no Tee junction.
Flag set to non-zero value if Pipe is used to model an accumulator.
Counter indicating whether the code is in a setup or back-substitution pass
in the flow equation solutions. See Secs. II.1.4, II.1.5, and II.1.6.
Index for referencing the portion of the iou array needed for the current 1D
section.
1D Network loop number currently being computed.
Phase-separation evaluation flag of the Tee offtake model, triggers special
value for alpst.

Velocity calculation flag for component left (low-numbered face) junction.
Velocity calculation flag for component right (high-numbered face)
junction.
Interface number of the adjustable-valve flow area. Zero if no valve.
Array index for the cell at the left end of 1D segment.
Index to the start point for the current network loop in contiguous constant
arrays as dvb, drl, dry, dra, drel, and drev.
Cell number for Tee primary leg connection source terms, or face number
for a pump of turbine momentum source.
Array index for cell beginning a Tee side leg.
Number of network junction in the current loop.
Counter for the number of steam separators.
Counter to locate Tee-side-leg information in the iou array.

Steam Generator flag (not used). I

Application Programming Interface Document
Rev. 0.4

Page 109

Application Programming Interface Document
Rev. 0.4

Page 110

APPENDIX D

PROPOSED FUTURE IMPROVEMENTS TO INFORMATION PASSING

Two tasks are scheduled that 14dl improve the data interfaces within the code
sigruficantly. They also lay the groundwork for communication in a parallel execution of
the main computational engine of the consolidated code. The first task will fully
separate the evaluation of terms in the flow equations from the solution of the resulting
system of linear equations. Once completed, this will provide a well-defined location for
equation terms and eliminate the need for generation of this data for 1D components
before evaluation of the equations in 3D components. The second task deals directly
with the prcblem of intercomponent data communication, requiring only one request at
initialization to establish automatic information passing between components. This is
being implemented as a system service, with sufficient generality to permit later use by
higher-order and more implicit difference methods.

Details of the solution modularization and resulting data interfaces are presented in
Sec. D.1. The proposed intercomponent communication procedure is outlined in
Sec. D.2.

D.l. Modularization of the Linear Equation Solutions

One major driving force behind this task is a need for flexibility within the code structure
for replacement of numerical methods during the development cycle. At this stage, we
have only a limited idea of the difference and solution methods that will be applied 5 or
10 years from now. The method of equation solution is not totally independent of the set
of equations to be solved. However, for a given set of difference equations, many
solution procedures will exist, and one best solution method may not exist for all
problem nodalizations. Separation of the equation solution permits quick adoption of
one or more solution methods. Even in instances where a new difference method drives
a need for a new family of solution methods, this separation makes the division of labor
and the isolation of testing easier.

The structure of arrays chosen for coefficients is to some extent governed by the
structure of the equations to be solved. It is not the goal of this project to create a data
interface general enough to handle all possible sets of equations. It is the goal to create
an interface that is clean and restricted enough in the scope of the application that its
replacement will be relatively simple if a major change is required in difference
equations and solution methods.

D.l.l. Theory of the Solution Procedure

To keep the emphasis on the methods used, an initial discussion is built around a simple
1D single-phase flow model; a specific example of flow in a closed loop is illustrated in
Fig. D-1. Cells and cell faces in Fig. D-1 have been given absolute numbers to facilitate
discussion of full-system equation coupling. In terms of component numbering, cells 1-
4 in this figure can be considered cells 1 4 of Pipe 1, and cells 5-8 in the figure could be
cells 1 4 of Pipe 2.

Application Programming Interface Document
Rev. 0.4

Page 111

3

1 5

7

Fig. D-1. Two pipe-flow loop.

The nature of the underlying numerical method (SETS) and form of the solution
procedure are not tightly linked to the details of the equations used in TRAC. These
details are available in the TRAC-PFl/MODZ Theory Manual and will not be repeated
here. The simple set of equations representing 1D flow in constant area pipes is

* + d (p V) = 0
at ax

*+-(peV) a = -p. av ax
at ax

and

Application Programming Interface Document
Rev. 0.4

Page 112

Here, K is a wall friction coefficient that may be a function of velocity and fluid
properties.

A staggered spatial mesh is used for the difference equations, with thermodynamic
properties evaluated at the cell centers and the velocity evaluated at the cell edges. Here,
uniform cell lengths and constant area are assumed. When values of thermodynamic
properties are required at cell edges, they are obtained from a donor cell formula:

where

and

Here, Y may be any state variable. With this definition of averaging, spatial differences of
flux terms become

A X

For our purposes, the numerical approximation to the momentum flux term V VV is
taken to be

Application Programming Interface Document
Rev. 0.4

Page 113

The actual momentum transport term in TRAC-M is more complex, involving area
scaling, but results in the same form of linear equations that will be seen here.

I
'1,l '1,2 O o o o O a , , s j (y
a2.1 '2,2 '2.3 o o o o o v .

'3,2 '3,3 '3,4 o o o o v 3
0 0 a 4 . 3 '45 '4.6 O O O V ,

'5,4 ' 5 . 5 '5.6 0 0
'6 .5 '6.6 '6,7

'7.6 '7.7 a7,8

D.1.1.1. Stabilizer Motion Equations
The SETS equations implemented in TRAC-M begin each timestep with a solution of a
stabilizer motion equation, with the following general form:

vs
'6

'7

This equation is purely linear in the urknown stabilizer velocities. When the tilde and
superscript are dropped for simplicity,, the general form for this linear system for the
flow loop in Fig. D-1 is

One standard trick in linear algebra to solve this problem is to break it into blocks that
can be solved more easily. One obvious approach would be to isolate the last row and
column of the matrix:

Application Programming Interface Document
Rev. 0.4

Page 114

-

0 0 0 0 0 I a1,8
I

‘1.1 a 1 . 2

a2,1 a2,2 a2,3 0 0 0 0 1 0
0 0 o l o a3,2 ‘3,3 ‘3.4 I

a4,3 ‘4.5 a4,6 0 o l o
a5,4 a5,.5 ‘5.6 o i o I

a6,5 ‘6,6 ‘67 I I
‘7.6 ‘7,7 ‘7.8 -----------------------------~---.

‘8.1 ‘8.7 ‘8,8

This then can be written more clearly as the following problem:

3 1 , l % , 2 0 0 0 0 0
32, 1 a2 ,2 a2 ,3 0 0 0 0

0 0 a4,3 a 4 , 4 a 4 , 5 0 0
a5,4 aS,5 aS,6 0

a3,2 a3,3 a3,4

a6,5 a6,6 a6,

0 0 0 0 0 a7,6 a7

. .
bl

b2
b3

b4

b5

b?
b6

a1, I

0

0

0
0
0

a7, I

03-91

. V 8

(D-10)

(D-11)

Equation (D-10) is solved to obtain velocities VI through V, as linear functions of V,.
The existence of two constant vectors on the right-hand side of the equation means that
two solutions of a 7 x 7 system are required. However, using a lower-upper (LU)
decomposition method makes the cost of the second solution insignificant compared to
the cost of the first. Once these solutions are available, the specific linear expressions for
VI and V, as functions of V8 are substituted into Eq. (D-ll), and a value of Vs is obtained.
Back substitution of this value into the equations for the other velocities completes the
solution.

Application Programming Interface Document
Rev. 0.4

Page 115

In Fig. D-1, there is nothing unusual about VB from the standpoint of the chosen
component structure. Although a final implementation of the solution procedure may
function as described above, the initial implementation must follow the current network
solution procedure. In that case, the velocities at the component junctions (VI and V,)
take on special signrficance as network variables. The full linear system is partitioned to
isolate the junction variables and junction equations:

I o o o I o I o
o i o o o i o i a7,6

a8,1 I I I a798 J 1

(D-12)

Actual solution of the linear system follows a process similar to the initial example. The
well-structured blocks are isolated as

a6, 6 a6, 7

a'?,, a7,7 E] = [I 4-

a8,7 a8,8

a6, 5
. O ~ " 5 -
0

and

Application Programming Interface Document
Rev. 0.4

(D-13)

(D-14)

(D-15)

Page 116

The cell edge ata junction between two components is shared by both components, and
a decision must be made as to which of these two components takes responsibility for
evaluating the terms in the momentum equation at this edge. The current procedure is
to give that responsibility to the one appearing first in the order of component
processing. In a later parallel version of the code, the responsibility generally will be
assigned to the first of the components processed during problem initialization.

Equations (D-13) and (D-14) are solved for interior velocities as linear functions of the
junction velocities:

Red1

[3 = E] +

and

ction D f the blocked network solution meth d is completed by substib
results in Eqs. (D-16) and (D-17) into Eq. (D-15), yielding

(5 , l + a1,2 al,1 + a13 a 2 v + @l,2 4 , s + a1,8 ai,,) v5
= bl - a1,2 bi - bi

and

(a5,4 a' 4,1 + a ,,6 a' 6,1)I(+ (a,,, + ai,

bi - a5,6 bi = b, -
+ a5,6 ' 5

(D-16)

ting the

(D-18)

(D-19)

This is a closed system that can be solved for VI and Vg. Back substitution of these
values into Eqs. (D-16) and (D-17) completes the solution of the system.

D.1.1.2. Basic Equations
After the stabilizer motion equations are solved, the version of SETS implemented in
TRAC-M proceeds to solve the "basic" equations for motion, mass, and energy. Apart
from the use of stabilizer velocities in the momentum transport term of the motion
equation, these equations are equivalent to the standard semi-implicit method used in
older versions of TRAC-M. A tilde over a quantity indicates that it is an interim result to

Application Programming Interface Document
Rev. 0.4

Page 117

be replaced with a final nontilde value before completion of the timestep:

(D-20)

(pi n + 1 ej -n + 1 - p F r)

At
+

AX

n + l n
-n+ 1Vj + I / Z - (pe)j = o +Pj A X

The solution begins by solving the motion equation directly to obtain the new time
velocity at each cell edge as a linear function of the pressure difference across that edge.
This is substituted into the mass and energy equations to eliminate the new-time velocity
as an unknown in those equations. For each cell, these two remaining flow equations,
combined with the necessary state relationships [p(p,T) and e(p,T)], give two nonlinear
equations with new-time pressure and temperature as the two independent variables.
These equations are linearized (part of a standard Newton iteration) with the
substitutions:

- n + l , i

- n + l , i + l - n + l , i

G + l* + = Tj +6Tj

P j = pj +6Pj
(D-23)

The second superscript in these equations is the iteration count. An auxiliary variable is
defined as

Application Programming Interface Document
Rev. 0.4

Page 118

-
The iteration proceeds by making substitutions of the following form into the difference
equations:

(D-24b)

The ith iterate values are all known, and the variations (lip’s and 6T’s) are assumed to be
small enough that nonlinear combinations of them (6p, ST, Sp2, ST2, etc.) can be ignored.
This results in a set of linear equations for each cell in the form:

(D-25)

The first row in the above linear system can be considered to be the linearized mass
conservation equation and the second to be the linearized energy equation. This system
is solved for the cell pressure and temperature variations in the form:

(D-26)

At this point, the b’ constants represent the linearized predictions of change in pressure
and temperature assuming no further velocity changes at the cell faces. The c’
coefficients account for contributions caused by velocity changes (driven by changes in
the pressure gradient).

Completing the solution of the basic equations requires two steps within the current
version of TRAC. Within each component, the pressure equations are isolated, and Ap
terms on interior faces are eliminated by substitution of the defining Eq. (D-25). For our
sample problem, this gives a tridiagonal linear system for each pipe:

, , ‘ + Cr1,1 -‘ri, 1 0 0

-c12,1 1 + c12,1+ %2,1 -Cr2,1 0
I I I ,

, , , I

0 -‘13,1 ‘13, 1 + ‘r3, 1 -‘r3, 1

0 0 -‘14,1 t ‘14,l
, ,

I

‘11, l

0

0

0

AP, +

0
0

0

‘r4,

4%

and

Application Programming Interface Document
Rev. 0.4

(D-27)

Page 119

, ,
1 + cr5,1 -‘r5,1 0 0

-‘16,1 ’ ‘16,l ‘r6,l -‘r6, 1 0
, , I ,

/ , / /

0 -‘17,1 + ‘17, 1 -k ‘r7,I %7,1

0 0 -‘18,1 ’ ‘18,

0
0

0

,
‘r8,l

-

. .

b5, 1

b7, 1

,
’6, 1

I APB,

Here, as before, the absolute cell index number is used from Fig. D-1, rather than the
component cell index number. The subscripts on the Ap terms refer to absolute face
indices shown in the figure. These equations currently are solved within TflDs to obtain
the pressure variations. This function will be moved to a subroutine ”triSolve”, called
from ”blockSolver”. Results of this solution are

and

(D-30)

Results of these solutions finally are combined via the definition of the network junction
variables. For this example, the defining equations for the junction variables are

Substituting in the 6p’s from Eqs. (D-30) and (D-31) gives

Application Programming Interface Document
Rev. 0.4

Page 120

-
,, ,, ,, ,, I R

and

These can be rearranged to the final form of the network equations:

,, ,, ,, ,, I I

(’ + ‘11,l + ‘r8, 1IAP1 - (‘rl, 1 ‘18, 1lAp5 = bl, 1 - b8, 1

and

(D-32)

(D-33)

(D-34)

(D-35)

These form a closed system in the network variables; this system is solved directly. Back
substitution follows into Eqs. (D-29) and (D-30), giving pressures that can be back
substituted into Eq. (D-26) to provide the iteration change in the new-time temperatures.

D.1.1.3. Stabilizer Mass and Energy Equations
The final step in the SETS method is the solution of the stabilizer mass and energy
equations. At this point, the new-time velocities have been determined and can be
treated as constants in the solution of the equations. The equations vary from the basic
mass and energy equations only in that the densities and energies in flux terms are now
evaluated at the new time:

(D-36)

At

n + l
= 0;

-n+l V n + l j+1/2- Vj-112

+ Pj At

(D-37)

Application Programming Interface Document
Rev. 0.4

Page 121

-.

These mass and energy equations can be seen to be basically linear in p"+' and (pe)"",
respectively, with a structure that is basically tridiagonal. For the loop flow problem, the
general form of the mass equation can be written as

Lines have been drawn to indicate the current TRAC

(D-38)

choice of network junction
variables. For a given component junction, the associated network variable is-the one
adjacent to that junction in the first of the two adjacent components processed. The
energy equation takes on a similar form, with the interesting property of using exactly
the same matrix on the left side of the equation. TRAC takes advantage of this dual use
of the coefficient matrix, using LU decomposition to reduce the solution time of the
systems.

The above equation structure should be recognized as being the same as the one
resulting from the stabilizer motion equations. The solution proceeds as described in
Sec. D.l.l.l, with a few minor variations.

D.1.1.4. Considerations for 3D Solutions
When Vessels are present in current versions of TRAC, the above procedure is followed,
with one key exception in each set of equations. When any Vessel variable (velociq, 6p,
p, or pe) occurs in an equation, it is moved to the right-hand side with its coefficient, and
all 1D variables are solved as functions of the unknown Vessel variables. These results
are substituted as needed into the difference equations for the Vessel to give a closed set
of equations that can be solved for all Vessel variables. Values for Vessel variables are
back substituted into the 1D equations, and final values for all 1D unknowns are
obtained.

Specific examples of this process are provided here for the system illustrated in Fig. D-2.
As in Fig. D-1, cells are given "absolute" numbers rather than a combination of
component numbers and cell numbers. For this example, cells numbered 1 through 5 are
in a Pipe and cells 6 through 9 are in a 3D (collapsed to 2D here) Vessel.

Application Programming Interface Document
Rev. 0.4

Page 122

1

8

Fig.

2
1

2
10

3 9 i 8
.-...-.-.-- i.... ---.I. 7

7 i 6 4 .-.-- *-.

6
4 9

D-2. Flow loop with 2D Vessel.

The full system of stabilizer momentum equations for the flow loop in Fig. 2 is
represented by Eq. (D-39). The last block in the coefficient matrix is associated with the
radial velocities V9 and V10 and is completely isolated from equations for the axial
velocities in the same 3D region. This reflects the fundamental structure of the 3D
stabilizer momentum equations. For example, the axial stabilizer momentum equations
evaluate contributions from axial velocities only implicitly. Radial and azimuthal
velocities appearing in momentum transport terms are evaluated explicitly. This results
in no coupling coefficients between velocity variables in the axial momentum block and
those in the radial (or azimuthal) blocks.

Solution of the 1D portion of this system proceeds as before, isolating the 1D block as

(D-39)

Application Programming Interface Document
Rev. 0.4

Page 123

and

This is solved to obtain the equation:

+

I

a2, 1

a3, 1

a4, 1

' 5 , 1 ,

,

,

,

VI +

I

a2, 6

a3, 6

'4, 6

6

,

,

I

(D-40)

'6 (D-41)

and these results are substituted into the junction equations to obtain:
, I ,

('1, 1 + '1, 2a2, 11'1 '1, 2'2,6'6 = b l - '1, 2b2 - al , 8'8

and

, I ,
a6, 5'5, l v l -t ('6, 6 4- '6, 5'5,6)'6 = b6 - '6, gb5 - '6, 7v7 03-43]

Equations (D-42) and (D-43) give junction velocities as a linear combination of the "3D"
velocities as

+ all 7
,

a6, 7
v 7 +

These two expressions are substituted into the 3D axial flow equations to obtain a final
closed set of equations for the 3D axial velocities (V7 and VS). Once the 3D velocities are
known, the 1D network junction velocities follow by back substitution, and the internal
component velocities are obtained in a final stage of the back substitution.

A similar pattern follows for solution of the basic and stabilizer mass and energy
equations. For the basic equations, the network junction variable equations analogous to
Eqs. (D-34) and (D-35) are

Application Programming Interface Document
Rev. 0.4

Page 124

(D-45)

and

(D-46)

These equations are solved for the network junction variables as functions of the 3D
pressure variations:

(D-47)

and

(D-48)

The semi-implicit nature of these basic equations means that the linkage between 3D
blocks and 1D blocks occurs only through junction variables such as Ap1 and Ap5. This is
a result of the fact that the only new-time terms shared by adjacent cells are the
velocities, which in turn depend only on the junction variables (Ap's). As a result,
substitution of Eqs. (D-47) and (D-48) into the 3D equation block produces a closed set of
equations that may be solved for final values of all 3D unknowns. Back substitution of
3D pressure variations into Eqs. (D-47) and (D-48) provides final values for network
junction variables, which in turn are substituted into the analog of Eq. (D-41) to yield
final values of 1D variables.

D.1.2. Software Implementation

New subroutines will be created to perform the full solution of the linear systems
generated by the approximations to the flow equations. These will replace statements in

Femom, Fernom, Femomy, Femomz, TflDs, and Stbme, which begin the solution
of the 1D portion of the linear equations, including all local coding for solution of
the local tridiagonal matrix structures and generation of terms in the network
matrices;

Tf 1Ds and Tf3Ds for cell block reduction;

Out3D, Post3D, Prep3D, and Vssl2 for Vessel matrix solution;

Outer, Post, and PreplD for solutiori of the network matrix; and

Bksmom, TflDs3, Tf3Ds3, Bksstb, and Bksstb3, which are directly related to back
substitution steps in the solution of the linear equations.

Application Programming Interface Document
Rev. 0.4

Page 125

The basic and stabilizer equations involve very different numbers of equations and
generate two different matrix strudures. As a result, two separate subroutines will be
created for solution of global system of linear equations. The more basic of these, Solver,
operates on the stabilizer equations and is described in the following section. The more
complex linear system resulting from the Newton iterative solution of die basr:
equations is solved by “blocksolver”, which is described in Sec. D.1.3.2. Descriptions
provided in these sections are for planning purposes only. Later studies on timing and
memory usage or special needs for parallel processing may change the details of the final
implementation.

D.1.2.1. Subroutine Solver
The interface to this subroutine is relatively simple. It uses the module Matrices and so
has full access to this data structure. Only two arguments are passed:

1. an abbreviated name for the array of independent variables, and

2. an optional argument set to ’factored’ when the coefficient matrix has already
been factored by a previous call to Solver.

One example of using this subroutine is the solution of the stabilizer mass and energy
equations driven be subroutine Post. The following code would be inserted just before
the end of the DO loop on ”ibks”:

IF (ibks.NE.l) CYCLE
CALL SOLVER(’arl’)
CALL SOLVER(’arel’,’factored’)
IF (iso1ut.ne.B) CALL SOLVER(’arc’,’factored’)
CALL SOLVER(’arv’)
CALL SOLVER(’arev’,’factored’)
CALL SOLVER(’ara’,’factored’)

ENDIF

This choice was made to permit a single point within Solver for association of auxiliary
arrays needed by solution methods and to permit transferring of knowledge of the data
structure to a lower level for parallel methods based on distributed memory machines.

Selection of arrays to be used in the actual solution will be via pointer association. As i~r.
example, the initial implementation will contain allocatable arrays in Matrices such as

TYPE (sparseMatrix), ALLOCATABLE, TARGET :: al(:), ag(:)
REAL, POINTER) DIMENSION (:) :: arlS, arvS, &
& arels arevs, aras, arcs, wts, vlts, arlRHS, &
& arvRHS, arelRHS arevRHS, araRHS, arcRHS, &
& WtRHS, VltRHS

Application Programming Interface Document
Rev. 0.4

Page 126

INTEGER, POINTER, DIMENSION (:) :: splitRowsC, splitRowsE
INTEGER, POINTER, DIMENSION (:) :: splitRows

REAL, POINTER, DIMENSIGN (:) :: rhs(:), ans(:)
TYPE (sparseMatrix), POINTER :: at(:)

Operations within Solver will be on generic arrays such as "at", "rhs", and "am", which
will be associated at the beginning of the subroutine based on the contents of the first
dummy argument "varname". For example,

SELECT CASE (varname)
CASE ('arl')
at => a1
rhs => arlRHS
ans => arlS
splitRows => splitRowsC
CASE ('wt')
at => ag
rhs => wtRHS
am => wtS
splitRows => splitRowsE

...
E N D SELECT

Following this initial decision on array usage, the solution procedure proceeds with the
steps outlined in Sec. D.l.l.l. The array splitRows is used to divide the 1D problem into
a set of tridiagonal blocks [see Eq. (D-E!)]. These block systems are solved and coefficient
arrays stored for later back substitution. A substitution of these results is made into the
splitting rows to generate the "network" equation system, which is solved with calls to
Sgefat and Sgeslt. If 3D components are present, solution of the network equations
involves the generation of coefficient arrays multiplying undetermined 3D variables. In
this case, a section of code is used to substitute these network results into the 3D
equations, and the 3D equations are solved for final values of 3D variables. The initial
implementation of Solver will use the existing TRAC Capacitance Matrix coding and
data structure to handle the storage and solution of the 3D portion of the problem.

All three major equation solution stages just outlined use LU factorization and store
sufficient information so that the factorization need not be repeated. When the
subroutine is called with the optional dummy argument "factored" present, processing
jumps immediately to the back-substitution step of the 3D solution, then proceeds
through back substitution of the network equations and of the initial tridiagonal systems
to obtain the'final values for the variables (stored in "ans").

Application Programming Interface Document
Rev. 0.4

Page 127

The initial implementation of this subroutine will contain equations in exactly the same
form as those in current versions of TRAC-M. Implementation of the solution steps
above will be programmed to match the reduction and back-substitution coding
currently scattered through TRAC as closely as possible to produce minimal
perturbation on test problem results. However, because the data structure is somewhat
different and the grouping of solution statements has changed, compilers will react to
this new implementation differently when producing machine code and results cannot
be expected always to match previous solutions to the last bit. The variation of any test
results should not be any greater than those produced by using a different compiler or a
different optimization level on the same compiler.

Although the solution procedure is formally the same as current code versions,
separating the solution steps produces immediate opportunities for more parallel
execution. In current versions, the contents of subroutines such as Femomx, Tf3Ds, and
STBME3 had to be executed after all similar 1D subroutines. After this modification,
these subroutines with their reduced scope of activity could be executed in parallel with
1D subroutines. A second version of Solver will provide the opportunity for additional
parallel computation within the solution process. The order of equation reduction will
be altered so that operations on the sparse blocks associated with 3D components can be
performed at the same time as those for the tridiagonal blocks associated with 1D
components. Only the solution of the network matrix will remain as a serial step. The
greatly reduced amount of information required by the network matrix will make
solving the preceding steps very amenable to a distributed memory environment.

D.1.2.2. Subroutine BlockSolver
Subroutine "blockSolver" communicates entirely through the module Matrices. It has no
argument list and thus, none of the special pointer assignments that begin Solver (see
previous section).

Solution begins with a block reduction in a loop over all elements of the derived-type
array "blocks" (type blockMatrix). This covers the cell block reduction of the linearized
basic equations for all cells in the system (1D and 3D). A special derived-type array is set
by the subroutine Sparcity to define the splitting of the reduced array inro tridiagonal
blocks. Array "triBlock" is allocated by the statement

ALLOCATE [triBlock(2,nTriBlocks)] ,

where "nTriBlocks" is the number of "network components" (total number of system
components plus the number of Tee's and any other Tee-like components). This array is
of derived-type netIndices defined as follows:

nethdices - a derived type providing information about indices needed to
(1) locate tridiagonal submatrices within system-wide coefficient
and constant arrays, and (2) couple them to the appropriate
network matrix.

- index in the system-wide array that starts the submatrix. ilow

Application Programming Interface Document
Rev. 0.4

Page 128

ihigh
netNum

netLow -

netHigh

netTee

index in the system-wide array that ends the submatrix.
index of the network matrix (or loop index) associated with this
submatrix.
index in the network matrix associated with the network variable
directly coupled to the low end of this tridiagonal submatrix.
index in the network matrix associated with the network
equation and variable directly coupled to the high end of this
tridiagonal submatrix.
index in the network matrix associated with the network
equation and variable directly coupled to a Tee junction within
this tridiagonal submatrix (this will disappear in later versions of
the Solver, provided now for consistency with the existing
Solver).

The blocks of 1D tridiagonal pressure equations are solved as outlined in Eqs. (D-26)
through (D-36). Substitution into the network junction in Eq. (D-32) is governed by two
other index arrays created by Sparcity. The derived-type array "junvars" contains
information on the ith network junction and is allocated by the statement:

ALLOCATE [junVars(nsplitsE)] I

where "nsplitsE" contains the number of network junctions in 'he system. Its
"netVarInd" me is defined as

J I

netVarTnd - a derived type providing indices to elements attached to the
"positive" and "negative" sides of a network junction.
Components are
pos - index of an array element to the positive side the network

junction and
neg - index of an array element to the negative side of the

network junction.

One more array with type netVarInd is needed to provide the indices of adjacent ele-
ments in the component "cDpp" of "blocks" containing pressure coefficient information.
This array "junCoef" is allocated by the statement

ALLOCATE [junCoef(nsplitsE)] .
These indices are used at each junction to obtain the information needed for
substitutions that move from equations such as those represented in Eq. (D-31) to the
network system analogous to Eqs. (D-34) and (D-35). These network equations are
solved to give the network variables as linear functions of the pressures in any 3D cells
adjacent to the network junctions, using calls to Sgefat and Sgeslt. A block of code
follows to substitute network variable information into the 3D pressure equations and

Application Programming Interface Document
Rev. 0.4

Page 129

-

transfer 3D pressure coefficients from the blockMatrix data structure to the structure
associated with the 3D Capacitance Matrix solution method. The job of solving the 3D
equations is passed to a revised version of the existing TRAC-M subroutine Matsol.

Results of the 3D solution are back substituted to provide final values for the network
variables (Ap’s). These are back substituted into the reduced tridiagonal systems to
provide pressures in all 1D cells. Finally, pressures are back substituted into the reduced
cell block equations, using components %p” and “cDpp” of “blocks”, to obtain final
values of all independent variables.

As with Solver, the above series of steps is designed to match the current solution stages
carefully in TRAC-M. The same comments on the matching of test results apply.

It is useful to compare the pressure equations occurring in this subroutine, immediately
after cell block reduction with the equations produced by the stabilizer mass and energy
equations. They have the same basic structure. As a result, a second version of
“blockSolver” will be created that contains the initial cell block reduction for the entire
system and passes the work of solving the pressure equations to Solver. This will reduce
the maintenance points in the program and concentrate the most complex programming
problems associated with parallel implementations into one location (Solver).

D.1.2.3. Implementation of Velocity Solution
Within the current code, the ord:r of the velocity variable array #is assigned effectively by
the subroutine Srtlp (called by Input). The partition lines shown in the previous equation
are established by Setnet during initialization. The revised code would continue to use
Srtlp to establish basic array order. However, more information will need to be stored.
Data are needed within each component for the subscript in Eq. (D-12), corresponding to
the stabilizer velocity at each cell face. Component subroutines will place these subscript
(index) values in the array “edgehdex”, within the component data structure (module
GenlDArray for 1D components, PlenArray for the Plenum, and the equivalent in the
Vessel). Subscript values will be stored at the same point in the program for cell-centered
variables used in mass and energy equations described below. These will reside in an
array named ”centerIndex”. In the revised code, partition lines will be produced by
Sparsity and by indices of the rows dividing blocks placed into a dynamically allocated
pointer array named ”splitRowsE” (”E” for edge) contained in the module “Matrices”.
A similar array named ”splitRowsC ”will be created to mark matrices related to cell-
centered variables.

The subroutine Sparsity also will have the job of storing indices for the off-band coeffi-
cients in the above matrix and for related matrices. These will be stored in arrays with
the type ”sparseMatrix”, defined as follows:

TYPE sparseMatrix
REAL :: a(bandWidth)
INTEGER, POINTER, DIMENSION(:) :: index
INTEGER :: nOffI3and

Application Programming Interface Document
Rev. 0.4

Page 130

REAL, POINTER, DIMENSION(:) :: aob
END TYPE sparseMatrix

ln this derived-type "bandWidth" is a parameter residing in module Matrices. The array
"a" contains coefficients along the primary band of the matrix, and the array "aob" con-
tains the "off-band" coefficients. The array "index" contains the column index for the
corresponding coefficient in "aob". The number of off-band coefficients is stored in the
integer "nOffBand". For the current difference equations, two allocatable "sparseMatrix"
arrays will be placed in module Matrices, "al" for liquid and "ag" for gas. If necessary
for future difference methods, this derived type can be cloned to produce types with
more thar one bandwidth or altered so that component "a" is an allocatable pointer. The
choice of fixed-dimension "bandwidth" was made based on the fixed structure associ-
ated with a given difference method and timing results on the use of allocatable pointers
within derived types (see the Data Structure Software Design and Implementation docu-
ment).

Femom contains the LU decomposition loops to produce the results in Eqs. (D-16) and
(D-17). It stores the "b' " vector coefficients in the variables "vlt" or "wt" (as appropri-
ate) and the "a' " coefficients in the array "trid" for later back substitution in Bksmom.

After revisions for modular solution, Femom will only create and store the coefficients
for each element in the appropriate "sparseMatrix" derived type array, and Bksmom will
transfer solution values only from system-wide arrays ("vltS" and "wts") in module
Matrices back into the component data structure. The job of solving the full set of linear
equations is passed to the subroutine Solver, which is called from subroutine Prep at the
end of the first pass through the loop on "ibks".

In the current version of TRAC-M, the coefficients of Vl and V, in Eqs. (D-18) and (D-19)
are built with statements in Femom assigning elements in the "aol" or "aov" arrays.
Because Femom is called from components, the entirety of one coefficient cannot be eval-
uated in a single call. When the first Pipe is processed in our example, contributions for
which a1,8 and a5 6 are factors cannot be completed because information on the motion
equations at cell faces 6 and 8 are not available. As a result, a1,8 and a5 6 are stored in the
network coefficient array "od", and the job of completing the values in "aol" or "aov" is
completed when Femom is called by the other Pipe.

After the separation-of-solution procedure, the final solution step is much less compli-
cated. Subroutine Solver has access to all necessary inforrnation to generate each coeffi-
cient in Eqs. (D-18) and (D-19) in a single step. Solution of these coupled equations will
be accomplished initially with the same Linpack-based subroutines (Sgefat and Sgeslt)
used in TRAC-M for this system.

D.1.2.4. Implementation of the Solution of the Basic Equations
The current version of TRAC generates the coefficients ajIi,k, bi& cljIi, and crili in Eq. (D-26)
within subroutine TflDs, storing them temporarily in the arrays "a" and "c". These

Application Programming Interface Document
Rev. 0.4

Page 131

-
arrays are overwritten by each cell, and the subroutine saves only the primed coefficients
resulting from the solution of each cell's block system. Arrays -for thermodynamic
variables and derivatives, not needed until the next iteration, are used to store these
coefficients.

Separation of the solution procedure from TflDs will utilize an array with type "block-
Matrix" in the module "Matrices" for the communication coefficient information to the
subroutine "blocksolver".

TYPE blockMatrix
REAL :: a(ncvars,ncvars), b(ncvars), bp(ncvars)
INTEGER, POINTER, DIMENSION(:) :: index
REAL, POINTER, DIMENSION(ncvars,:) :: cDp, cDpp
END TYPE blockMatrix

The number of independent variables per cell is an integer parameter "ncvars"
contained in "Matrices". Arrays "a" and "b" match the usage above, and "bp" is the
primed "b" array. The array "cDp" contains the coefficients of the TIp terms associated
with the cell, and "cDpp" contains the primed coefficients obtained after solution of the
cell's block system.

The pressure Equations [(D-27) and l@-28)] in tridiagnal form currently are solved
within TflDs to obtain the pressure variations. This function will be moved to a
subroutine "triSolve", called from "blockSolver".

The equations for the network variables [Eqs. (D-34) and (D-35)] currently are built
within TflDs. As with the stabilizer motion equations, terms for each of these equations
must be contributed from calls to TflDs by both components adjacent to the junction.
Solution of the equations is performed within the subroutine Outer, through calls to
Sgefat and Sgeslt. Construction and solution of these equations will be moved to
"blockSolver" .
D.1.2.5. Implementation of the Stabilizer Mass and Energy Equation Solution
The structure of the stabilizer mass and energy equations should be recognized as being
the same as the one resulting from the stabilizer motion equations. Operations associated
with Femom now are associated with Stbme, and those associated with Bkmom are done
in Bksstb for the mass and energy equations. This similarity will be recognized in the
modularized solution by using the same data structure and solution package for all
stabilizer equations.

D.1.2.6. Implementation of the 3D Solution
Solution for 1D variables as a function of unknown 3D variables is driven by PreplD for
the stabilizer velocity solution, by Outer for the pressure solution of the basic equations,
and by Post for the stabilizer mass and energy equations. Solution of the Vessel
equations is done in Prep3D for stabilizer velocity equations, by Vssl2 (or Out3D for
multiple Vessels) for the pressure equations, and by Post3D for the stabilizer mass and

Application Programming Interface Document
Rev. 0.4

Page 132

-
energy equations. Back substitution of Vessel information into the ID equations is driven
by PreplD for the stabilizer velocity solution, by Outer for the pressure equations, and
by Post3D for the stabilizer mass and energy equations. In the modularized solution, the
3D equations will be just blocks in the full system matrix and will be treated within
Solver or "blockSolver" as appropriate. In the first implementation, reduction to and
back substitution from the 3D blocks in Solver and "blockSolver" will be identical to the
form used in the original program. Once this is tested, a modified version will be created
in which reduction of the 3D block of equations is not dependent on completion of the
1D equation reduction.

D.1.3. Test Plan for Linear System Solution

Testing of the solution modifications will proceed in three phases. The subroutines
Solver and "blocksolver" initially will be debugged in isolation from TRAC-M. A small
driver will be written to create matrices in a number of configurations, within the data
structure of module Matrices. The test problems will result from selection of an answer
and multiplication of the matrix by the answer to generate a right-hand side for use in
the solution subroutine. Results of the solution procedure will be printed adjacent to the
initially selected answer, along with a measure of error.

Initial installation of the Solvers in TRAC-M will be tested with some very simple test
problems. The first of these will be similar to the loop in Fig. D-1, but using a p m p
component to replace one of the pipes as a momen%m source. The second will create a
loop from the primary legs of three tees, with injection from fills on two side legs and
outflow through the remaining side leg. Variations of this will be created to check proper
treatment of Tee momentum source terms when side legs join at the first, last, or only cell
of the primary leg. A third series will add a simple Vessel to the pump loop. All of these
simple tests will have versions that are single-phase gas, single-phase liquid, and bubbly
two-phase flow. In principle, the single-phase tests exercise all of the code, but the two-
phase tests are needed to check for bugs that introduce false communication between the
equations for each phase. All tests should produce identically printed results in codes
with and without modifications. The two-phase versions will be watched with a
debugger to check the results to machine precision.

The third level of testing will be a comparison of results for the full TRAC
developmental assessment matrix (as used for official TRAC-M releases). Printed results
generally should match, but differences should be expected for some sensitive problems
(e.g., reflood). In these instances, tests will be ntn to compare these deviations with
deviations experienced from the use of different compilers and different optimization
levels.

This three-stage test procedure will be used for the initial versions of these Solvers and
for later revisions introduced to permit a parallel version of the program.

Application Programming Interface Document
Rev. 0.4

Page 133

D.2. Improved inter component Communication

A request-driven communications method will be created based on requests from
components or external programs for specifically named variables. The variable names
will be passed as ASCII strings. In this initial phase of development, these requests will
be made only during the initialization phase of a calculation. However, provisions will
be made to permit a dynamic communication process, where the list of variables
requested by a given component can occur at any time during the calculation. This will
be useful in interactive simulations or for dynamic linking to other programs.

Information transfer has been designed to permit a “read-only” transfer of information.
The communication system intentionally prevents direct access by the requesting
component to the storage of the requested information in the adjacent component. This
is an attempt to localize errors in new components and limit poor programming
practices involving alteration of data by unexpected portions of the program. It also lays
a groundwork for parallel processing, providing values of communicating variables that
are updated only at well-defined synchronization points in the execution of the program.

No global storage will be created to hold component boundary information as is now the
case with the component boundary array (bd). It is the responsibility of the requesting
component to provide space for the transferred data. For example, consider the
initialization process of a problem containing a Pipe component 10 with junctions
numbered 1 and 2. To obtain one necessary piece of boundary information,-the pipe will
ask the communication service for information named ”DX” from the first cell beyond
junction 1, to be placed in the variable BDl%DX contained in the component 10 data
structure. The communications service will consult the data structure to locate the
component and. cell that is the first beyond junction 1. It will use a pointer location
subroutine to determine what variable is associated with the ASCII name ”DX”. Finally,
the service will make pointer associations within the service data structure to the
appropriate source element of the DX array and to a destination BDl%DX. These source
and destination pointers will reside in a derived-type array and will be used directly
during the calculation for transfer of information.

The key to flexibility will be low-level subroutines available to perform operations such
as the one described above. These subroutines will not be restricted to obtaining
information from the cell immediately adjacent to a junction and will, for example,
respond correctly to a request for information in the third cell past a junction for use in a
higher-order numerical method. Design of the communications also will permit its use
for moving heat structure and control block information, but full implementation of
these capabilities is not included in the level of effort for the initial task. In addition, the
structure will be designed for later support of parellel virtual machine (PVM) requests
for information and transfer of that information via PVM.

D.2.1. Location of Component Junctions

A component must register its flow connections with the system services to permit

Application Programming Interface Document
Rev. 0.4

Page 134

correct intercomponent communication. This currently is accomplished within input
and restart subroutines (Rpipe, Repipe, etc.) by filling in entries to the JUN array. The
revised registration involves passing information to a junction cell data structure with a
subroutine call. In this context, registration is required for both standard intercomponent
junctions and intracomponent junctions, such as the junction of a Tee side leg to the
primary leg. The subroutine doing the work is “junctions” and has the following
interface:

SUBROUTINE junctions (compNum, cellNum, junNums , vOutSign, theta, phi, dist,
ncAdj)

where the following definitions hold:

compNwn
cellNum

junNum

vOutSign

theta

dist
ncAdj

- input component number for the cell with this junction;
- number for the cell containing the junction to another compo-

nent (or to the other section of the same Tee);
input component junction number, or generated junction num-
ber, for an internal Connection;
the sign of the velocity associated with flow out from the cell
through this junction face (+1 or -1);
the angle (degrees) between an inwardly directed-normal-to-the-
junction face and the primary positive direction of motion
within the component;
the angle (degrees) between an inwardly directed-normal-to-the-
junction face and a reference vector perpendicular to the
primary positive direction of motion within the component;
the distance between the cell center and the junction face;
number of cells in this component adjacent to the junction face in
the direction of the inward normal-to-the-junction face.

-

-
-

-

-
-

When calculating theta in a Vessel, the primary positive direction of motion is taken to be
the positive z direction. The reference vector for computing phi is taken to be pointing
toward the center of the Vessel. This results in values of phi is

1. zero for a connection in from the outer radial cell face,
2. 90 degrees for a connection in from the high-numbered cell theta face,
3. 180 degrees for a connection from an inner radial cell face, and
4. 270 degrees for a connection from the low-numbered cell theta face.

For registration of an intracomponent junction such as a Tee-side-leg connection, a
unique junction number must be generated. This is accomplished with a reference to the
function “interiorJunNum”, which returns a new unique (and negative) number with
each call. For example, in a Tee component, the following coding would be appropriate
for registration associated with the side leg:

Application Programming Interface Document
Rev. 0.4

Page 135

junSide=interiorJunNum ()
dist=. 5* wjcell (jcell, cost, gldAr (cci) %hd, gldAr (cci) %dx)
angle = acos(cost)*180/pi
CALL junctions (nun, jcell, junside, 1, angle, 0, dist, 1)

CALL junctions (num, ncelllt2, junSj.de, -1, 0, 0, &

.5* gldAr (cci) %dx (ncelll+2), ncellt-ncelll-1)

The subroutine "junctions" installs the information from the dummy argument list into a
derived-type array for further processing to index and locate boundary information:

TYPE junctionCellsT
INTEGER cco, compNum, cellNum, juncNun, vOutSign, otherside
REAL theta, phi, cosTheta, dist

END TYPE junctionCellsT

TYPE (junctionCellsT), ALLOCATABLE, TARGET :: junCells(:) ,

where the components of the type have definitions matching those given above for
arguments plus the following :

cco
otherside

cosTheta - cosine of theta.

-
-

index for the component in ordered arrays [e.g., gldAr(cco)];
index of the element in juncells containing information on the
other side of this junction; and

D.2.2. Transfer of Component Boundary Information

During initialization, a component can set up for information transfer on several
different schedules. Transfer is scheduled for calculation setup only, either once per
timestep or once per cycle through components. Variables containing fixed geometry or
index or flag information are transferred only during the initialization phase. This
transfer occurs at every pass through components during initialization but does not
continue beyond the start of the first timestep. Some variables become "old-time"
quantities simply by transfer of the "new-time" value from the previous timestep. These
are scheduled for transfer at the beginning of each timestep. Of the remaining variables,
some may be generated only once during a specific phase of a timestep. However,
modifications to numerical methods may alter the points at which such variables are
recalculated. To retain maximum flexibility) this information is transferred after each
cycle through all components. Consideration can be given to further refinement of the
scheduling after the advanced code reaches a higher level of maturity.

Most flow of information is as boundary values requested by a component. This is
scheduled through calls to the subroutine "GetBDfor" during initialization. Its interface
is in the form

SUBROUTINE GetBDfor (compNum, juncNum, off set, varName, localStore),

Application Programming Interface Document
Rev. 0.4

Page 136

http://junSj.de

where the following definitions hold:
-4

compNum - input - component number for the requesting component;
junNum - input component junction number or generated junction num-

ber for an internal connection;
offset - number of cells or faces that the desired information is offset to

the other side of the junction face (currently 1 for cell center
information and 0 or 1 for cell face information);
name (or alias) of the variable containing information needed; varName

localstore - a pointer to local storage.
-

This subroutine will have a generic interface to accept the pointer "1ocalStore" as either a
scalar or vector Integer or Real type. It will use low-level pointer assignment
subroutines such as "GetArrayPointer" to associate the variable name (varName) with a
pointer to the appropriate memory location and obtain a flag indicating whether the
variable is to be transferred at the beginning of the calculation, beginning of the
timestep, or on each cycle. A sorted version of "juncells" will be used to trace the
location of the information.

The result of calling GetFor is one or more entries in one of six communications tables.
These are established by the ldllowing type definitions.

TYPE t r a n s f e r R e a l T

END TYPE t r a n s f e r R e a l T
TYPE t r a n s f e r I n t T

END TYPE t r a n s f e r I n t T
TYPE (t r a n s f e r R e a l T) , ALLOCATABLE :: transonce, transstep, transcycle
TYPE (t r a n s f e r I n t T) , ALLOCATABLE :: itransonce, i t ranss tep , i transcycle

REAL, POINTER, source, des t ina t ion

INTEGER, POINTER, source, d e s t i n a t i o n

At appropriate points in the code, a very simple subroutine is called that loops through
the elements in one of the transfer arrays making the necessary assignments.

SUBROUTINE o n e T r a n s f e r
IMPLICIT NONE
INTEGER i
DO i = l , n T r a n s O n c e

ENDDO
RETURN
END

transonce (i) %des t ina t ion = transonce (i) %source

This subroutine is contained in the same module as the data structure and thus does not
require a USE statement to access transonce.

Application Programming Interface Document
Rev. 0.4

Page 137

D.2.3. Communica ion to Components in Other Processes

Once basic intercomponent communication is functioning for standard TRAC problems,
a class of components will be created named ”Exterior”. Input for the component will
simply list the component number and a table of junction numbers and associated
connection information. Connection information will include the cell to which the
junction connects and whether the exterior component is responsible for computing the
velocity at that face. The Exterior component subroutines and associated data structures
will be very minimal, providing code for negotiating and passing boundary information
to and from a parallel task that performs the detailed calculations for the actual Exterior
component (or block of components).

Communication between the Exterior component and its connection point in a parallel
code will in some ways be similar to the transfer initiated by ”GetFor”. The initialization
routine (Exterior) will pass out a request for an ordered data stream giving the ASCII
variable name and location for each item required, along with a request for frequency of
transmission. If the target program uses different nomenclature for physical variables, an
intermediate translator program will intercept this request and pass it on to the target
program. The initialization routine also will receive a data request stream from the target
(translated if necessary) and schedule data transmissions.

D.2.4. Communication for Heat Structures, Control Blocks, and Related Models

Once the above commuriications are functioning, the’next task will be to create similar
table-driven transfers for heat structures, signal variables, control blocks, and the
radiation model. These components have direct knowledge of the connecting
component and cell numbers. Table-driven transfer could be created by calls to
initialization subroutines GetFrom and PutTo that directly reference the component and
cell numbers from or to which information is to be transferred. Transfers would in some
instances require different scheduling than discussed above.

4 . :

D.2.5. Testing of Communications

The second and third phases of the test set described in Sec. D.1.3 should cover all of the
communications functionality. These test problems will be reviewed to ensure that all
component types are tested for all flows that include liquid and gas phases,
noncondensables, and solute.

Application Programming Interface Document
Rev. 0.4

Page 138

