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ABSTRACT 

The objective of this document is to ease the task of adding new system 
components to the Transient Reactor Analysis Code (TRAC) or altering old 
ones. Sufficient information is provided to permit replacement or 
modification of physical models and correlations. Within TRAC, 
information is passed at two levels. At the upper level, information is 
passed by system-wide and component-specific data modules at and 
above the level of "component" subroutines. At the lower level, 
information is passed through a combination of module-based data 
structures and argument lists. This document describes the basic 
mechanics involved in the flow of information within the code. The 
discussion of interfaces in the body of this document has been kept to a 
general level to highlight key considerations. The appendices cover 
instructions for obtaining a detailed list of variables used to communicate 
in each subprogram, definitions and locations of key variables, and 
proposed improvements to intercomponent interfaces that are not 
available in the first level of code modernization. 

I. INTRODUCTION 

The objective of this document is to ease the task of adding new system components to 
the Transient Reactor Analysis Code (TRAC) or altering old ones. In addition, sufficient 
information is provided to permit replacement or modification of physical models and 
correlations. The description of interfaces associated with system components requires 
some repetition of information provided in the Software Design Information Document 
(SDID) for TRAC-M data structured and in the Code Architecture and Computational 
Flow document to be prepared at the completion of the database restructuring effort. 
However, only the general features of the data structure and code architecture will be 

Application Programming Interface Document 
Rev. 0.4 

Page 1 



described here. These two documents also should be read carefully before attempting to 
create or modify a TRAC system component. 

Within TRAC, information is passed via system-wide and component-specific data 
modules at and above the level of "component" subroutines, such as Rpipe, Repipe, 
Ipipe, Pipel, Pipe2, Pipe3, Dpipe, Xtvpipe and Wpipe. Examples of system level data 
modules are GlobalDatM, GlobalPntM, and GlobalDimM. Examples of component- 
specific data modules are PipePtrM, PipeVltM, PlenPtrM, and PlenVltM. Below these 
subroutines, information is passed through a combination of module-based data 
structures and argument lists. One goal of the initial TRAC modernization was to 
minimize changes to subprogram argument lists. As a result, the argument lists and 
calling trees below the level of the component routines are very similar to those in 
TRAC-PF1 /MOD2. The argument lists of the component subroutines themselves have 
been eliminated to avoid conflicts with the revised data structure. 

The basic logic behind information passing in TRAC has been to pass state variable 
arrays for the fluid or structure material and indices bounding array sections through 
argument lists. Scalar-state variables passing boundary information (particularly at the 
Tee internal junction) were passed through special modules. Variables that operate as 
constants in state equations, correlations, etc., also have been passed through common 
blocks (now modules). Unfortunately, this logic was not followed consistently over 20 
years of development, and exceptions exist. No consistent pattern has developed for 
scalar flags and important array indices. These can be found passing through both 
argument lists and modules. 

The most complex and frequently modified interfaces exist in the component-related 
subroutines. Component subroutines are provided for each of nine key stages of TRAC 
execution: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Input of initial component data (e.g., Rpipe); 

Input of restart information for a component (e.g., Repipe); 

Initialization of component-dependent variables (e.g., Ipipe); 

Stabilizer momentum equation solution, evaluation of various old-time 
quantities, and other bookkeeping at the beginning of each timestep (e.g., Pipel); 

Iterative solution of basic flow equations for each timestep (e.g., Pipe2); 

Solution of stabilizer mass and energy equations, solution of the conduction 
equations, and other computations to complete each timestep (e.g., Pipe3); 

Output of data to the restart dump file (e.g., Dpipe); 

Output of data to the XTV graphics files (e.g., Xtvpipe); 

Output of data to the ASCII detailed edit file (e.g., Wpipe). 
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Similar component subroutines for each of the nine key stages of TRAC execution also 
exist for the other TRAC components, e.g., Tee, Fill, Break, Pump, Prizer, Valve, and 
Plenum. 

A schematic illustrating the TRAC’s top-level program flow, with emphasis on the 
computational solution of the flow equations, is presented in Fig. 1. The program 
construct is shown for advancing the solution one timestep, beginning with subroutine 
Trans, which begins with the stabilizer step for the equation of motion (subroutine Prep), 
basic equations solution for all equations (subroutine Outer), and stabilizer step for mass 
and energy equations (subroutine Post). 

Within a given timestep, subroutine Prep calls all component subroutines twice. 
Subroutine Outer calls all component subroutines twice, and subroutine Post calls all 
component subroutines three times. In each case (Prep, Outer, and Post), two passes 
provide the setup and solution of a set of equations. However, the two passes in Outer 
are contained within a Newton iteration loop. Post adds a third pass to calculate some 
final end of timestep values for mass flows and mean cell densities. The outer loops in 
Prep, Outer, and Post, which take more than one pass through all components, are 
indexed by the variable ”ibks.” This variable takes on values of one and two in Prep, 
values of zero and one in Outer, and one, two, and three in Post. Component 
subroutines in these three stages must use the module OneDDat to obtain the value of 
ibks to follow the flow of the calculation properly. 

Each of the subroutines shown in Fig. 1, Init, Steady, Trans, Prep, Outer, and Post, access 
lower-level subroutines. More detailed calling trees are presented in App. A, beginning 
with each of these subroutines, as well as the calling tree for the driver routine, TRAC 
(Fig. A.1). 

The next five sections cover some of the basic mechanics involved in the flow of 
information within the code. A discussion is provided for one-dimensional (1D) 
component subroutines in Sec. 11, for the three-dimensional (3D) Vessels in Sec. 111, for 
the Plenum component in Sec. W, and for the heat structures in Sec. V. The basic pattern 
for information flow seen in Pipe is repeated in all basic components and should be 
understood before trying to work with the more complicated components. Section VI 
covers noncomponent models, such as the control-system, constrained steady-state, 
hydraulic-path steady-state initialization, and radiation models. The discussion of 
interfaces in the body of this document has been kept at a general level to highlight key 
considerations. For instructions on obtaining a detailed list of variables used to 
communicate in each subprogram, consult App. B. For definitions and locations of key 
variables, consult App. C. Appendix D covers proposed improvements to intercom- 
ponent interfaces that are not available in the first level of code modernization. 

The general code architecture provides the ability to connect a wide range of component 
and physical models to the existing code. However, many such connections are not 
desirable or should be approached with extreme caution. Section VII presents known 
limitations on the range of useful connections. 
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Fig. 1. TRAC computational flow. 
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11. ONE-DIMENSIONAL COMPONENTS 

The interface to a 1D component follows one basic pattern that is best seen in Pipe, with 
minor variations for boundary conditions and Tee-type components. Tees involve 
duplication of Pipe coding and special internal generation of boundary conditions at the 
internal Tee junction. Boundary conditions (Fill and Break) generate junction boundary 
information on the same cycles as Pipe, but perform relatively few other operations. 

11.1. Pipe 

The data interfaces for the Pipe component are described here for each of the nine 
computational stages outlined in Sec. I. The pattern described here for the information 
passing is followed very closely in the other 1D components and, as will be seen in later 
sections, is followed to a large degree by the Plenum and Vessel. 

11.1.1. Basic Input for Pipe 
The basic calling tree associated with input is summarized in Fig. A.2.a of App. A. 
Throughout this document, the Pipe component is used as the primary vehicle for 
discussing the lower-level subroutines in the calling tree. Input of initial Pipe data is 
driven by Rpipe, which is called by the subroutine Rdcomp. Creation of a new 
component similar to Pipe would require the addition of a Call in Rdcomp to process 
that component’s input. The component’s type (Pipe), component number, ID number, 
and descriptive title are obtained in subroutine Input (Fig. A.1) before it calls Rdcomp. 
This information is passed to Rpipe via the module for the fixed length table (FltM) as 
the variables type, num, id, and title. Rpipe obtains values of other scalar variables for 
the component from the ASCII input file, using the subroutines Readr and Readi 
(Fig.A.2.b). These two subroutines also echo this input to the detailed output file 
(trcout). Readr and Readi should be used for input of any scalar data for a component to 
maintain a consistent interface with the input file and its reflection to the output. 

Rpipe calls the subroutine Rcomp to obtain array information on the geometry and 
initial state of the fluid for all cells (dx, vol, fa, fric, fric, gravp, elev, hd, hdht, nff, lccfl, 
alpn, vln, vvn, tln, tvn, pn, and pan, and where appropriate, wfmfl, wfmfv, qppp, matid, 
twn, concn, and sn). Rcomp in turn uses the subroutine Loadn to bring array data from 
the input and the subroutines Warray and Wiarn, respectively, to echo real and integer 
array values to the output. Loadn, Warray, and Wiarn also are used directly by Rpipe to 
obtain additional array information. These subroutines (Rcomp, Loadn, Warray, and 
Wiarn) are the standard interfaces for reading and echoing array values from the input 
file and should be used for this purpose in any new component. 

When input errors are detected in subroutines at or below subroutine Input, the input 
line is echoed to the standard detailed ASCII output file and a warning message is 
printed to that file, the message file, and the terminal. The error message is produced by 
a call to the subroutine Error, with the first argument set to ”2” to indicate a warning 
rather than a fatal message. By convention, the message (passed as the second 
argument) begins with the name of the subroutine processing the input line, bounded by 
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single asterisks (e.g., “*rpipe* inconsistent init & table power”). When additional 
diagnostic information is necessary, including values of variables, direct Write 
statements are necessary. Pairing of this information to the messages from Error requires 
three writes: one to the terminal (unit number in variable ‘Wy” from module Io); one to 
the standard detailed ASCII output (unit number in variable ”iout” from module Io); 
and one to the message file (unit number in variable ”imout” from module Io). 

Termination of input processix is flagged at two levels of severity. The lowest-level 
input routines (Loadn, Readi, Lzadr, and Nxtcmp) set the value of variable ”ioerr” 
(located in the module Io) to one when an input error is detected. Subroutine Input 
checks the value of “ioerr” after completion of basic component input (call to Rdcomp) 
and terminates if it is not zero. The presumption is that input errors are severe enough 
that it is not worth any processing of the restart file or Ca7iding of flow network 
connectivity. Higher-level routines (Input, Rpipe, Rtee, etc.) Bag problems for later 
termination by setting the variable “jflag” (contained in module Badinput) to one. One 
exception is subroutine Rcomp, which uses a variable ’jflagc” (contained in the commc-m 
block concck) for the same purpose. The class of errors detected at these levels is 
presumed to be localized enough to make checking of flow network connectivity 
profitable. Input will terminate execution before returning if jflag or jflagc is not equal 
to zero. 

Rpipe has one other important but subtle interface that must be replicated in new 
components. By supplying values to the ”jun” array (and incrementing jun’s current 
index ”jptr”)/ Rpipe supplies information to the system necessary to establish the order 
of the calculation and the structure of the network solution matrix. The ”jun” array is 
scanned by Srtlp (Fig. A.l) after all input is processed, and the order of component 
processing is placed in the array ”iorder”. Srtlp also returns other significant information 
necessary for the details of the network solution procedure (see App. D for details). The 
lower-level calling trees for other TRAC components are shown in Figs. A.2.b through 
A.2.d. 

11.1.2. Restart Input for Pipe 
The basic calling tree associated with restart input is summarized in Fig. A.3 of App. A. 
Input of restart information for a Pipe component is driven by the subroutine Repipe, 
which is called by Rdrest. Creation of a new component similar to Pipe would require 
the addition of Call i r k  kdrest to process that component’s input. Restart input begins 
with communication OP the lists of all system components (iorder) and all components in 
the ASCII input deck (nbr) to Rdrest via the system-wide data structure (Fig. A.l). The 
Pipe’s fixed length table is read from the restart file by a call from Rdrest to rstFLT. If the 
Pipe’s component number is included in the current list of system components but not in 
the list of component’s read from the ASCII input file, then Repipe is called to complete 
restart input. 

Repipe uses the subroutine Rstvlt to read the Pipe variable-length table from the restart 
file. It then echoes values of the variable-length table to the standard detailed output file 
using subroutine Reecho. Standard arrays required for restart of 1D flow (dx, vol, fa, fric, 
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grav, hd, nff, lccfl, wa, qppp, matid, alpo, alpn, vln, tln, pn, pan, wfmfl, wfmfv, aran, twn, 
tvn, a h ,  chtin, wn, arm, arln, arevn, areln, rmvm, rvmf, vmn, bitn, hiv, hil, hig, higo, 
cifn, rhs, wt ,  vlt, g a m ,  elev, chtan, alven, twan, twen, tcen, and, when appropriate, sn, 
concn, and qppc) are acquired by a call to Recomp. Those arrays that would normally 
appear in an echo of input are printed by a call to Wrcomp, which in turn uses the 
standard low-level routines Warray and Wiarn to write array values to the standard 
detailed output file. Actual input of values or arrays of values in Repipe or Recomp is 
accomplished with the subroutine Bfin rather than a direct FORTRAN Read statement 
because TRAC contains its own buffered 1/0 routines (Bfaloc, Bfin, and Bfout) for 
output to binary files. These buffered I/O subroutines should be used with any new 
component, as should standard routines to echo values to the standard detailed output. 

As with Rpipe, values for the "jun" array must be loaded from Repipe to provide 
information on the pipe's location in the flow network. 

The restart and dump need not be the direct responsibility of the component's 
programmer. App. D contains a proposal for "system services" that would provide for 
these functions with minimal information from the component's programmer. 

II.1.3. Initialization of Pipe-Dependent Variables 
The basic calling tree associated with initialization is summarized in Fig. A.4 of App. A. 
Initialization of Pipe-dependent data is driven by the subroutine Ipipe, which is called 
by Icomp. Any nev,'component would require the creation of an initialization routine 
and the addition of an appropriate call to Icomp. 

Icomp sets the values of two arrays that provide information to component subroutines. 
The first, "jseq", is simply a list of all junction numbers used in the current system 
model. It is used only during the initialization phase, providing a convention to 
components for storage and use of junction-specific information such as the boundary 
(bd) array. The second array filled by Icomp (vsi) contains sign convention information 
for component junctions, aligned one for one with the junction numbers in "jseq". If an 
element of "vsi" is +1.0, then the velocities in the two adjacent components have the 
same sign convention (flow at +2.0 m/s at that junction in one component is also +2.0 
m/s at that junction in the other component). If an element of vsi is -1.0, then the 
velocities in the two adjacent components have the opposite sign conventions (flow at 
+2.0 m/s at that junction in one component is interpreted as -2.0 m/s at that junction in 
the other component). This array is used throughout the calculation to translate velocity 
and mass-flow boundary information between components. 

Calls to component-specific initialization subroutines are contained in a DO loop that 
will cycle either two times for normal execution or three times if steady-state (stdyst) 
options 3 or 4 are selected to perform an initial estimate of steady-state temperature and 
velocity distributions. The status of the loop counter is stored in the variable iinl (named 
common block elvkfj' and can take on the values of 0, 1, or 2. However, component- 
specific subroutines (e.g., Ipipe) are called only when iinl has values of 1 or 2. The basic 
work of component initialization takes place when iinl=l. When iinl=2, Ipipe and 
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similar routines check the consistency of cell edge quantities at the junction, compute the 
elevation changes across components, and convert the loss coefficients to TRAC's 
specific form of friction factors. All components must follow this pattern of processing 
during the initialization step for the boundary checking process to function. 

Ipipe begins by obtaining values for two communications variables contained in the 
variable-length table (module PipeVlt). Variables "jsl" and "js2" contain the index in 
junction-related arrays (bd, vsi) for the left and right junctions of the pipe. They are used 
throughout the calculation to index the appropriate elements of the boundary (bd) and 
velocity sign (vsi) arrays for the pipe end junctions. Values are determined for "jsl" and 
"js2" with the function Jfind. 

Ipipe next calls to subroutine Junsol twice (one for each junction) to set isollb and isslrb 
(in module PipeVlt), indicating the nature of the velocity calculation at the junction 
value of 0 from one of these variables indicates that the velocity is fixed by a EL: 
boundary condition. A value of 2 indicates that a Break is across the junction and that no 
other active component contributes to the momentum equation. A value of 1 indicates 
that another active component (Pipe, Tee, Vessel, etc.) is on the other side of the junction 
but that the current component (this Pipe': performs the evaluation of the momentum 
equation. A value of -1 indicates that another component evaluates the momentum 
equation, and that component appears before the current one in the order of 
computation. 

The same calls to Junsol initialize the network index array iou. If the junction being 
processed is an active participant in the network solution (isollb or isolrb is +1 or -1), 
then the input value for that junction nurnber is placed in the appropriate location in iou. 
A later call to Setnet from Icomp converts these junction numbers to unique indices for 
the network junction variables associated with the component junction. 

Ipipe, like all other existing 1D component initialization routines, uses a call to the 
subroutine Iprop to initialize dependent fluid-state variables (density, internal energy,, 
etc.), physical properties such as viscosity, and mixture properties such as the mean 
density. The actual computation of these properties is done or driven by the subroutines 
Thermo, Fprop, and Mixprp, respectively. Information is communicated between Iprop 
and these subroutines via their argument lists. Iprop communicates the information 
directly to the comp -derived-type data structure. Iprop should be used whenever 

nts. If a replacement is constructed for a special component, 
derstand and mimic the use of the variable "irest" (from 

modt;.. -2 Flt) in Iprop. Many properties (particularly macroscopic densities and energies) 
must De generated from more basic variables when a component is first input. However, 
when irest=l, the component data are coming from a restart file, bringing values for 
many of these variables from the restart file that must not be overwritten during 
initialization. 

Initialization is the first stage at which boundary information is generated and passed. 
Ipipe uses the standard 1D boundary subroutine Setbd, which accepts arguments 
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necessary for setting the boundary conditions at the two end cells of the 1D section. 
Setbd calls J1D for each of the ends to actually set the elements of the ”bd”-derived-type 
array. 

The boundary (bd) array is a derived type with one element for each component junction 
in the system. When calculations begin for a given component, the information in the 
boundary array for each of its junctions represents conditions in the adjacent component. 
When a component completes its calculations, its end conditions are loaded over this 
boundary information so that calculations for the adjacent components will have correct 
boundary information available. The components of the derived type contain all of the 
geometry and fluid state information necessary for one component to model flow across 
the junction from another using a first-order-difference method. For the ith junction, the 
derived type is as follows: 

bd(i)%alp 
bd(i)%alpn 
bd(i)%alpo 
bd(i)%ara 
bd(i)%aran 
bd(i)%aratio 
bd(i)%arel 
bd(i)%areln 
bd(i)%arev 
bd(i)%arevn 
bd( i)%arl 
bd(i)%arln 
bd(i)%arv 
bd(i)%arvn 
bd(i)%bit 
bd(i)%bitn 
bd(i)%cifiQ 
bd(i)%concn 
bd(i)%dfldp 
bd(i)%dfvdp 
bd(i)%dx 
bd(i)%eln 
bd(i)%evn 
bd(i)%fa 
bd( i)% fa 
bd(i)%gamn 
bd(i)%grav2 
bd(i)%hd 
bd(i)%num 
bd( i)%p 

- adjacent cell, old void fraction 
- adjacent cell, new void fraction 
- adjacent cell ,void fraction from step before old time 
- adjacent cell, old noncondensable macroscopic gas density 
- adjacent cell, new noncondensable macroscopic gas density 
- ratio of total flow area in this direction to this junction area 
- adjacent cell, old macroscopic liquid internal energy per volume 
- adjacent cell, new macroscopic liquid internal energy per volume 
- adjacent cell, old macroscopic gas internal energy per volume 
- adjacent cell, new macroscopic gas internal energy per volume 
- adjacent cell, old macroscopic liquid density 
- adjacent cell, new macroscopic liquid density 
- adjacent cell, old macroscopic gas density 
- adjacent cell, new macroscopic gas density 
- adjacent cell, old bit flags 
- adjacent cell, new bit flags 
- new time interfacial drag coefficient, one face past the junction 
- adjacent cell, new solute concentration 
-junction derivative of liquid velocity with pressure 
-junction derivative of gas velocity with pressure 
- adjacent cell length 
- adjacent cell liquid, specific internal energy 
- adjacent cell gas, specific internal energy 
- flow area one face past the junction 
-junction flow area 
- adjacent cell, new mass-transfer term 
- gravity vector, one face past the junction 
- junction hydraulic diameter 
- adjacent component number 
- adjacent cell, old pressure 
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bd(i)%pa 
bd(i)%pn 
bd(i)%roa 
bd(i)%rol 
bd(i)%roln 
bd(i)%rom 
bd(i)%rov 
bd(i)%rovn 
bd(i)%sig 
bd(i)%sxl 
bd(i)%sxv 
bd(i)%tln 
bd(i)?htmsl 
bd(i)%tmsv 
bd(i)%otvn 
bd(i)%type - adjacent component type 
bd(i)%visl 
bd(i)%visv 
bd(i)%vl -junction, old liquid velocity 
bd(i)%vln -junction, new liquid velocity 
bd(i)%vln2 
bd(i)%vlt 
bd(i)%vlt2 
bd(i)%vlto 
bd(i)o/ovlto2 
bd(i)%vlvol 
bd(i)%vol - adjacent cell volume 
bd(i)%vsi 
bd(i)%w -junction, old gas velocity 
bd(i)%wn -junction, new gas velocity 
bd(i)%wn=! - new time gas velocity, one face past the junction 
bd(i)%wt -junction, new gas stabilizer velocity 
bd(i)%W - new stabilizer gas velocity, one face past the junction 
bd(i)%wto - junction, old gas stabilizer velocity 
bd(i)%wto2 - old stabilizer gas velocity, one face past the junction 
bd(i)%wvol - adjacent cell, center gas velocity 
bd(i)%wfhfl -junction, liquid wall friction input scale factor 
bd(i)%wfmfv -junction, gas wall friction input scale factor 
bd(i)%xsm - adjacent cell, center x position 
bd(i)%ysm - adjacent cell, center y position 
bd(i)%zsm - adjacent cell, center z position 

- adjacent cell, old noncondensable partial pressure 
- adjacent cell, new pressure 
- adjacent cell, old noncondensable gas density 
- adjacent cell, old liquid density 
- adjacent cell, new liquid density 
- adjacent cell, old mean density 
- adjacent cell, old gas density 
- adjacent cell, new gas density 
- adjacent cell, old surface tension 
- coefficient in liquid momentum source from adjacent Tee connection 
- coefficient in gas momentum source fiom adjacent Tee connection 
- adjacent cell, new liquid temperature 
- constant in liquid momentum source from adjacent Tee connection 
- constant in gas momentum source from adjacent Tee connection 
- adjacent cell, new gas temperature 

- adjacent cell, old liquid viscosity 
- adjacent cell, old gas viscosity 

- new time liquid velocity, one face past the junction 
- junction, new liquid stabilizer velocity 
- new stabilizer liquid velocity, one face past the junction 
- junction, old liquid stabilizer velocity 
- old stabilizer liquid velocity, one face past the junction 
- adjacent cell, center liquid velocity 

- junction velocity, sign convention translation 
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Loading this array provides the single most important information interface between 
components. Unfortunately, the cyclic dual use of each element in the array places strict 
requirements on the order of processing of components, thus restricting options 
available for parallel processing. Appendix D presents a future option to generate 
boundary information in a way that is consistent with the needs for parallel processing 
and that is more transparent when creating or modifymg components. 

11.1.4. Solution Prepass 
This stage of the calculation includes the stabilizer momentum equation solution and 
evaluation of various old-time quantities and other bookkeeping necessary at the 
beginning of each timestep. The basic calling tree associated with the prepass is 
summarized in Fig. A.5.a of App. A. Again, the Pipe component is used to illustrate the 
lower-level calling tree. The Pipe prepass is driven by the subroutine Pipel, which is 
called by PreplD. Creating a new component similar to Pipe would require the addition 
of a Call in PreplD to handle the prepass for that component. 

Subroutine Prep loops over most component subroutines (via PreplD and Prep3D) 
twice, communicating the pass number through the variable "ibks" in module 
OneDDat. Each pass over components begins with a double loop over all 1D system 
flow loops and all 1D components (including plenums) within each flow loop. The loop 
index "il" used in PreplD is needed in lower-level routines to select network-variable 
indices and network coefficient arrays and is communicated through module OneDDat. 
*In this stage, the network index array is used to reference two variables per network 
junction: the junction stabilizer liquid and vapor velocities. Variable coefficients for the 
network equations are passed through "aol" and "aov" and constants through the arrays 
"drl" and "drv", all contained in the module named "Network". Network coefficients 
linking 1D velocities to Vessel stabilizer velocities are stored in the "rclvss" and "rcwss". 

The first pass through 1D components results in a call to Preper from Pipel (Fig. A.5.b). 
Preper communicates directly with the component-derived-type data structure and 
moves most information to lower levels via argument lists. Unfortunately, it currently 
mixes four types of tasks in its calls to other subprograms. The first of these is general 
bookkeeping, including calculations of some Vessel junction matrix coefficients and a 
call to Volv to compute cell-centered velocities. The second task is setup and partial 
solution for the stabilizer momentum equations, which are delegated to Femom. The 
third task is calculation of basic physical properties, such as wall friction coefficients (call 
to Fwall), interfacial drag coefficients (Femom), wall metal properties (call to Mprop), 
and wall heat-transfer coefficients (HTCs) (call to Htpipe). Modular considerations 
suggest that at least the task of computing basic physical properties should be isolated in 
a separate subroutine, which is also called at the component level (e.g., from Pipel). The 
fourth task is the evaluation of a component-specific model. If the component type is a 
pump (Fig. A.5.c), then the subroutine Pumpsr is called to provide pump-momentum 
source terms. Preper is a transition routine from the standpoint of data communication. 
It uses the system-wide and component-specific data structures, but passes on 
information on the state of the fluid through the argument lists of lower-level 
subroutines. 
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Boundary information is communicated via Setbd (called from Pipel, Fig. A.5.b in App. 
A) during the first pass through all components (ibks=l). However, the second pass 
through all components (ibks=2) performs only a back substitution on the stabilizer 
momentum equations. As a result, a standard update to the boundary array is not 
performed. Only elernents associated with the stabilizer velocities are updated directly 
in subroutine Bkmon This includes the elements associated with the Tee momentum 
source terms (sxl, sxv, tmsl, and : which are just set to zero in Pipe. 

In addition to the use of argument - ss and the component-derived-type data structure, 
two other important interfaces arp found in subroutine Preper (called by Pipel). The 
simplest is the use of the variable- -r100 and imlOOx (module GlobalDat) to signal if a 
timestep backup has occurred (imi00 or imlOOx = -100). In the event of a backup, 
calculations of cell-center velocities are not repeated. Another important communication 
path exists to Femom and other flow equation subroutines. These are in principle 
isolated from the component ar*d system data structures. Indices for the network arrays 
are communicated to these low-level subroutines through the variables "iOl", "iOZ", and 
"i03", and the velocity sign conventions at the junctions are communicated via "s0l"and 
"~02". All are contained in the module OneDDat. The sign conventions associated with 
"sol" and "SOY are related, but not identical to those in "vsi". Within a component 
responsible for the evaluation of a network junction equation, the value of this sign 
convention at that junction is always +l. If the component does not evaluate the junction 
equation at a given junction, then the sign convention contained in "sol" or "s02" (as 
appropriate) matches that in "vsi" for that junction. A variable "s03" is not needed 
because the sign convention at the junction between the primary and secondary side of a 
Tee is known to be +1. The lower-level calling trees for other TRAC components are 
shown in Figs. A.5.d through A.5.1. 

11.1.5. Solution Outer Iteration 
This stage is devoted to the iterative solution of basic flow equations for each timestep. 
The basic calling tree associated with this iteration is summarized in Fig. A.6.a of App. A. 
The subroutine Hout has primary control of the iterations, but most of the control for a 
given iteration is contained in subroutine Outer (called by Hout). The Pipe contribution 
to the outer iteration is driven by the subroutine PipeZ, which is called by OutlD. 
Creating a new component similar to Pipe would require the addition of a Call in OutlD 
to handle the outer iteration for that component. 

Subroutine Outer loops over most component subroutines (no action is taken on heat 
structures) twice, communicating the pass number through the variable "ibks" in 
module OneDDat. OutlD contains DO loops over all 1D system flow loops and all 1D 
components (including plenums) within each flow loop. The loop index "il" used in 
OutlD is needed in lower-level routines to select network-variable indices and network 
coefficient arrays and is communicated through module OneDDat. In this stage, the 
network index array is used to reference one variable per network junction, which is the 
cell-centered difference across the junction of the iterative change in pressure. Variable 
coefficients for the networl nquations are passed through the array "aou" and constants 
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through the array "dvb", both contained in the module named "Network". Network 
coefficients linking 1D junction variables to Vessel new-time pressures are stored the 
system-wide array in the array "rcvss". Communication of these coefficients is 
particularly important because Outer completes the computation of the network matrix 
diagonal, in addition to solving for network variables as functions of Vessel new-time 
pressures. 

Communicating boundary information follows a different path in the outer iteration 
than in the prepass. The boundary array is set with direct calls to J1D from subroutine 
Inner, as called by Pipe2 (Fig. A.6.b). Boundary array information also is used in Inner to 
set values of the new junction velocities (and derivatives with respect to pressure) in the 
component if they have already been calculated in another component during this stage. 

Inner does little besides boundary array operations, calling TflD to manage most of the 
work of setting up and solving the basic equations. TflD follows the pattern of Preper in 
setting network array indices and sign conventions (iO1, i02, i03, sol, and s02). It also 
contains the unfortunate mixture of calls to physical correlations (e.g., the call to Htif, 
which calculates the interfacial HTCs), with calls to numerical solution subroutines 
(TflDsl and TflDs, to set up and partially solve the basic flow equations). TflD is a 
transition routine from the standpoint of data communication. It uses the system-wide 
and component-specific data structures, but passes on information on the state of the 
fluid through the argument lists of lower-level subroutines. 

One other communicating variable worth noting is "oitno" (named common istat). Its 
base use is to hold the iteration count, generated in Hout and used to trigger special first- 
iteration operations in low-level routines such as TflD. The count is also used by 
Newdlt as a contribution to the calculation of timestep size. In the event of an iteration 
failure, it takes on a second function as a flag to the postpass containing a value of 100. 

One flaw in the current code structure and information flow in the outer iteration stage is 
that equation setup, equation solution, and evaluation of physical models are driven at a 
relatively low level (TflD). A similar situation exists in the prepass with the mixing of 
equation setup and evaluation of interfacial drag coefficients in subroutine Femom. One 
key future set of tasks will be to separate these types of calculations at a much higher 
level (see App. D). The calling tree from Outer to Out3D and lower levels are provided 
in Fig.A.6.c. Additional lower-level calling trees are provided in Figs. A.6.d through 
A.6.i. 

11.1.6. Solution Postpass 
The basic calling tree associated with the postpass is summarized in Fig. A.7.a of App. A. 
The postpass is driven by subroutine Post and loops through all components three times. 
As with Prep and Outer, the index for this loop is the variable "ibks" in module 
OneDDat. This process performs (1) the solution of stabilizer mass and energy equations 
when ibks = 1 and 2; (2) the solution of the conduction equations and evaluation of fluid 
properties (viscosity, specific heat, conductivity surface tension, and heat of 
vaporization) when ibks = 2 ; and (3) other minor computations necessary to complete 
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each tirnestep (mass flows and mean velocity) when ibks = 3. The Pipe contribution to 
the outer iteration is driven by the subroutine Pipe3, which is called by Post. In addition 
to driving the most component routines directly, Post calls Post3D to drive postpass 
activities associated with Vessel components. It also plays a significant role in 
restructuring the junction mass and energy equations in the single-phase limit and sets 
the diagonal values of the network matrices. Network matrix information and 
associated right-handside arrays are passed from most lower-level routines via the 
module named “Network” directly to linear system Solvers (Sgefat and Sgeslt) via their 
argument lists. 

At the component level (Pipe3), boundary information is passed with the same 
mechanism as in the prepass. Subroutine Setbd is called to set both left- and right- 
junction boundary conditions, which in turn uses J1D to set individual values at a given 
junction (Fig. A.7.b). 

Solving the stabilizer momentum equations is driven by a call to Constb. Only junction 
information and bounding indices for arrays are passed to Constb from Pipel via the 
argument list. Constb accesses most necessary information via the system-wide and 
component data structures and passes this to lower-level subroutines via their argument 
lists. As with Preper and Inner, Constb must generate network junction indices and sign 
coefficients (iOl, sol, etc.) for the lower-level subroutines (passed through OneDDat). 
Constb calls Stbme to set up and partially solve the stabilizer equations within the 
component, passing all information on the state of the fluid through %e argument list. 

Pipel calls Poster (Fig. A.7.b) to handle the back-substitution portion of the stabilizer 
equation solution, along with several other tasks. This approach is in many respects 
analogous to the approach in Preper, sharing the problem of combining the evaluation of 
physical properties (call to Fprop) with bookkeeping and the solution of flow equations 
(call to Bksstb). As with that routine, Pipel should be broken eventually into more 
flexible modules. Pipel uses the module OneDDat as a communications path to pass 
network matrix indices and sign conventions (iO1, sol, etc.) to Bksstb and, as with Preper 
and Inner, is a transition subroutine from the standpoint of communications. Pipel has 
access to the system-wide and component-specific data structures and passes most of 
this information to lower-level subroutines through their argument lists. 

Post, Pipe3, and Poster receive information on the success of the iterative solution 
through the variable “oitno” in the named common ”istat”. On an iteration failure, Post 
sets the variable ”ibks” to two, skipping the equation solution steps. Pipe3 skips a table 
evaluation for heat sources. On a backup, Poster drives the restoration of all new-time 
variables to their original old-time values, which are needed to restart the iteration; 
however, most other tasks in Poster are suppressed. Additional lower-level calling trees 
are provided in Figs. A.7.c-g. 

11.1.7. Restart Dump for Pipe 
The basic calling tree associated with the restart dump is summarized 
App.A. The restart process is driven by Dmpit, which uses Bfout to 

in Fig. A.8 of 
write general 
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variables, calls Rdflt (driver for Bfin calls) to obtain component fixed-length tables, and 
writes component-specific data with subroutines such as Dpipe. The vast majority of 
communication throughout the chain of calls is via modules associated with system- 
wide and component-specific data structures. Switching from modules to argument lists 
as the means of communication occurs only at the calls to Bfout. 

Subroutine Dpipe is very brief, using Bfout directly to write Pipe-specific arrays and 
calling Dcomp to dump information generic to 1D components. Dcomp obtains the 
variable-length table using the subroutine Rstvlt and drives the output of both the fixed- 
and variable-length tables with subroutines Dmpflt and Dmpvlt, respectively (both use 
Bfout for actual output). It then issues a series of calls to Bfout to write the array data 
general to all 1D components. 

From the standpoint of the restart data interface, it is important to remember that all data 
are routed to the restart dump file via the subroutine Bfout. The structure of the file itself 
can be deduced fairly quickly by following the string of Bfout calls under Dmpit. 
However, because of the potential importance of this interface to later separation of 
ASCII input processing into a separate program, a full description of the dump file is 
provided in App. E. 

11.1.8. Output of Graphics Data 
Names of subroutines initializing and writing graphics information begin with the 
letters “xtv”. However, this does not mean that the output is useful only to the graplBcs 
postprocessor named “XTV”. This key program interface is well indexed and contains 
all information necessary to extract data for other data postprocessing, including 
translation for use by other graphics packages. Although the raw data are written in 
binary format, the necessary index information is written to a separate ASCII file that is 
relatively easy to interpret. This section contains the information necessary to use this 
index information for reading the binary graphics data. 

The graphics output is initialized with a call from Init to Xtvinit (Fig. AJ), which sets the 
descriptive names of all array variables to be written on the binary graphics file (xtvgr.b). 
Initialization continues with a call to the Xtvdr, using an argument of zero [Call 
xtvdr(0)l. This value of the dummy argument ”xmode” is propagated to lower-level 
subroutines through argument lists and triggers a mode that writes time-independent 
component information and index information about time-dependent variables written 
to “xtvgr.t”. Unfortunately, this mix of time-independent and index information 
requires extra work when writing a program to extract data from the graphics file. T i e  
could be saved by creating a special data extraction program by either adapting source 
code from XTV or modifying the existing output subroutines (XtvlD, Xtvplen, ...), which 
would replace write statements with reads. 

The actual binary graphics output is driven by Xtvdr with a value of one passed to the 
dummy argument ”xmode”. This call appears in Trans, Steady, and Pstepq. The basic 
calling tree associated with writing of graphics data is summarized in Fig. A.9 of App. A. 
Xtvdr begins writing for a timestep by calling Xtvbufs to output the edit time. It then 
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loops over components calling Rdflt to read the component fixed-length table and a 
component-specific output subroutine (e.g., Xtvpipe, Xtvtee, Xtwalv, Xtvvsl, and 
Xtvplen). It ends with calls to subroutines to output heat structures (Xtvht), signal 
variables (Xtvsig), and control blocks (Xtvcb). Output to the binary file (xtvgr.b) is 
buffered and at the lowest level written with the C function “fwrite”. 

The exact contents of the file ”xtvgr.t” vary with the components in the problem and 
order of execution selected by TRAC for those components. The file begins with the first 
line from the TRAC input title information. After that, blocks of information follow for 
all components. Currently, the only supported 1D components are the Pipe, Tee, and 
Valve, which output the same set of information to ”xtvgr.t” by using XtvlD. Planned 
upgrades to the graphics output will include the other 1D components, as well as 
component-specific quantities such as pump speed. Special information blocks exist for 
Plenum and Vessel components. Information for the ”flow” components is followed first 
by blocks for all heat-structure components, then those blocks for signal variables, and 
finally those for control blocks. 

1D Component Information Block 

First Record Group of the Block (single record): cStype, num, nc, ctitle 
c8type - 
num - Component number from the input deck 

ctitle - Component title information from the input deck 

Component type [formatting precedes this with an asterisk (*)I 

nc - Total number of cells in the component 

Second Record Group of the Block (single record): junl, jun2, jun3, ncelll, jcell 
junl - Input junction number for the left (low-numbered) end 
jun2 - Input junction number for the right (high-numbered) end 

jun3 - 
ncelll - 
jcell - 

Input junction number for the Tee side leg, right junction (if present) 
Number of cells in the primary (if Tee) 
Cell in the primary to which the Tee side leg attaches (if present) 

Third Record Group of the Block (eight numbers per record): dx(1 : nc) 
dx - Cell-length array 

Fourth Record Group of the Block (eight numbers per record): grav(1 : nc+l) 
grav - Cell-face gravity cosines 

Fifth Record Group of the Block (eight numbers per record): fa(1 : nc+l) 
fa - Cell-face flow areas 

Sixth Record Group of the Block (single record): nvname 
nvname - Number of variable “arrays” output to xtvgr.b 

Application Programming Interface Document 
Rev. 0.4 

Page 16 



Seventh Record Group of the Block (nvname records): vnamel, fflagl 
vnamel - Decriptive name for the variable being output [formatting follows this 

n m e  with an asterisk (*)I 
fflagl - Flag indicating size of the variable array 

= 1, Cell-face variable (nc+l values) 
= 0, Cell-center variable (nc values) 
= - 1, Scalar variable (1 value) 

Current values for vamel, associated values of fflagl and variable names are: 

vnamel (l)='volume fraction' 
vname 1 (2)='pressure' 
vname 1 (3)='saturation temperature' 
vname 1 (4)='liquid temperature' 
vname 1 (5)='vapor temperature' 
vname 1 (6)='liquid velocity' 
n a m e  1 (7)='vapor velocity' 
vname1(8)='flow area' 
vname 1 (9)='liquid density' 
vnamel (I O)='vapor density' 
vname 1 (1 l)='solute mass fraction' 
vname 1 ( 12)='non-~ondensible pressure' 
vname 1 ( 1 3)='total mass-flow' 
vname 1 (1 4)='vapor mass-flow' 
vname 1 (1 5)='mass phase change rate' 

fflagl(l)=O 
fflagl(2)=0 
fflagl(3)=0 
fflag1(4)=0 
fflag1(5)=0 
fflag 1 (6)=1 
fflag 1 (7)= 1 
fflag 1 (8)= 1 
fflagl(9)=0 
fflagl(1 O)=O 
fflag 1 (1 1)=0 
fflag 1 ( 12)=0 
fflag 1 (1 3)=1 
fflag 1 (1 4)=1 
fflag1(15)=0 

alp 
P 
tsat 
tl 
tv 
vl 

fa 
rol 
rov 
concn 
Pan 
mft 
mfv 
g- 

w 

Plenum Component Information Block 

First Record Group of the Block (single record): c8type, num, 1, ctitle 
c8type - 
num - Component number from the input deck 
1 - 
ctitle - Component title information from the input deck 

Component type [formatting precedes this with an asterisk (*)I 

Total number of cells in the component (always 1) 

Second Record Group of the Block (single record): npljn 
npljn - Number of junctions connected to the plenum 

Third Record Group of the Block (eight numbers per record): junj( 1 : npljn) 
junj - Component junction numbers associated with connections to the plenum 

Fourth Record Group of the Block (single record): nvnamep 
nvnamep - Number of variable "arrays" output to xtvgr.b 
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Fifth Record Group of the Block (nvnamep records): vnamep, fflag 
vnamep - Descriptive name for the variable being output [formatting follows this 

name with an asterisk (*)I 
fflag - Flag indicating size of the variable array 

= 1, CeIl-face variable (npljn values) 
= 0, Cell-center variable (1 value) 
= - 1, Scalar variable (1 value) 

Current values for vamep and associated values of fflag are 

vnamep( l)='volume fiaction' 
vnari,~p(2)='pressure' 
vnmen(3)='saturation temperature' 
vnmq(4)='liquid temperature' 
vnamep(5)='vapor temperature' 
vnamep(6)='liquid density' 
vnamep(7)='vapor density' 
vnamep(S)='solute mass fraction' 
vnamep(9)='non-condensible pressure' 
vname 1 (1 O)='mass phase change rate' 

fflag=O 
fflag=O 
fflag=O 
fflag=O 
fflag=O 
f f l ag=O 
fflag=O 
fflag=O 
fflag=O 
fflag=O 

dPn 
Pn 
tsat 
tln 
tvn 
roln 
rovn 
concn 
Pan 

Vessel Component Information Block 

First Record Group of the Block (single record): &type, num, nrsx, ctitle 
c8type 
num - Component number from the input deck 
nrsx 
ctitle - Component title information from the input deck 

- Component type [formatting precedes this with an asterisk (*)I 

Number of radial cells in the 3D fluid mesh - 

Second Record Group of the Block (single record): ntsx, nasx, ncsr 
ntsx Number of Theta cells in the 3D fluid mesh 
nasx Number of axial cells in the 3D fluid mesh 
ncsr - Number of source connections to the Vessel 

- 
- 

Third Record Group of the Block (ncsr records): ir, it, iz, juns 
ir - Radial index for the junction cell 
it - Theta index for the junction cell 
iz - Axial index for the junction cell 
juns - Input deck junction number associated with this junction between the 

Vessel and adjacent 1D component. 

Fourth Record Group of the Block (single record): 
igeom - Set to 0 if mesh geometry is cylindrical and to 1 if it is Cartesian 
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Fifth Record Group of the Block (eight numbers per record): rad( 1 : nrsx) 
rad - Radii of the outer radial-cell faces (igeom=O), or location of upper face in 

the x direction (igeom=l). The first face is asswed to be positioned at 
rad=O or x=O. 

Sixth Record Group of the Block (eight numbers per record): th( 1 : ntsx) 
th - The first face is assumed to be positioned at th=O or y=O. This provides the 

Angle (in radians) of the remaining azimuthal cell faces (igeom=O) or loca- 
tion of the remaining cell faces in the y direction (igeom=l). 

Seventh Record Group of the Block (eight numbers per record): z(l : nasx) 
2 - The first face is assumed to be positioned at FO. This provides the location 

of the remaining cell faces in the z direction (igeom=O or 1). 

Eighth Record Group of the Block (single record): nvname3 
nvname3 - Number of variable "arrays" output to xtvgr.b 

Nineth Record Group of the Block (nvname3 records): vname3, fflag3 
vname3 - Descriptive name for the variable being output [formatting follows this 

name with an asterisk (*)I 
fflag3 - Flag indicating size of the variable array 

= 1, Cell face variable (nasx*nrsx*ntsx values) 
= 0, Cell center variable (nasx*nrsx*ntsx values) 
= - 1, Scalar variable (1 value) 

Current values for vame3, associated values of fflag3, and variable names are given 
below. Depending on the value of igeom, "xr" designates either the "x" or "r" direction, 
and "yt" designates either the y or theta (azimuthal) direction. Variables with flag values 
of 0 (cell center) or 1 (cell edge) have a total of nasx*nrsx*ntsx values written to xtvgr.b: 

vname3( l)='volume fraction' 
vname3 (2)='pressure' 
vname3(3)='saturation temperature' 
vname3(4)='liquid temperature' 
vname3 (5)='vapor temperature' 
vname3(6)='effective wall temperature' 
vname3 (7)='xr liquid velocity' 
vname3(8)='xr vapor velocity' 
vname3(9)='yt liquid velocity' 
vname3( 10)='yt vapor velocity' 
vname3( 1 1)='z liquid velocity' 
vname3( 12)='z vapor velocity' 
vname3( 13)='solute mass fraction' 

fflag3( l)=O 
fflag3(2)=0 
fflag3(3)=0 
fflag3 (4)=0 
fflag3(5)=0 
fflag3(6)=0 
fflag3 (7)= 1 
fflag3(8)=1 
fflag3(9)=1 
fflag3( lo)= 1 
fflag3( 11)=1 
fflag3( 12)=1 
fflag3( 13)=0 

alpn 
Pn 
tsn 
tln 
tvn 
wallt 
vlnxr 

vlnyt 
wnyt 
vlnz 

conc 

WIlXT 

WIlZ 
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vname3( 14)='non-~ondensible pressure' 
vname3( 15)='mass phase-change rate' 
vname3( 16)='xr liquid mass-flow' 
vname3( 17)='xr vapor mass-Aow' 
vname3( 1 8)='yt liquid mass-flow' 
vname3( 19)='yt vapor mass-flow' 
vname3(20)='z liquid mass-flow' 
vname3(2 1)='z vapor mass-flow' 
vname3(22)='vessel water-mass' 
vname3(23)='core water mass' 
vname3(24)='core liquid frac' 

Heat-Structure Component Information Block. 

fflag3( 14)=0 
fflag3( 15)=0 
fflag3( 16)=1 
@ag3( 17)=1 
fflag3( 18)=1 
fflag3(19)=1 
fflag3 (20)=1 
fflag3(2 1 )=1 
fflag3(22)= -1 
fflag3(23)= -1 
fflag3(24)= - 1 

Pan 
g- 
c5p4 
c5p6 
c5p3 
c5p5 
vmfil 
V m h  

vlqmss 
vcore 
corelq 

First Record Group of the Block (single record): cbi +*e, num, 1, ctitle 
c8type Component type (ROD or SLAB) (formatting precedes this with an aster- 

isk) 
num - Component number from the input deck 
1 integer 1 (forced value for total number of cells) 
ctitle - Component title information from the input deck 

- 

- 

Second Record Group of the Block (single record): nodes, nzmax, mods, idbci, idbco 
nodes - Number of radial conduction nodes 
m a x  - Maximum permitted number of axial conduction node:; 
mods - Number of copies of this component 
idbci - Inner-surface boundary option 

= 0, Perfect insulator or, for a ROD, no inner surface 
= 1, Constant HTCs and external temperatures 
= 2, Coupled to fluid cells in one or more components 

idbco - Outer surface boundary option 

Third Record Group of the Block ( single record) : nvname 
nvname - fixed at 4: Number of variable "arrays" output to xtvgr.b 

Fourth Record Group of the Block (four records): Index records for heat-strxture scalars 
These four records each contain a decriptive name for the variable being output to the 
binary file, followed by an asterisk and a flag value fixed at zero. Here, the flag value of 
zero represents a scalar (or array of length 1). 

'max avg x ~ d  temp' 
' m a  hot : .emp' 
'inner surf total power' 
'outer surf total power' 

f f l a g = O  
fflag = 0 
fflag = 0 
fflag = 0 

tramax 
trhmax 
tpowi 
tpowo 
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This general heat-structure information is followed by “m~ds” blocks of detailed rod information, 
one block for each copy of the heat structure. 

First Record Group of the Block (single record): c8type, num, nodes, c8type, ncr, ctitle 
c8type 

num - Component number from the input deck 
nodes - Number of radial conduction nodes 
c8type - Component type (ROD or SLAB) 
ncr 
ctitle 

- Component type (ROD or SLAB) (formatting precedes this with an 
asterisk and follows it with a “c”) 

- 
- 

Index number of the ROD copy (a number between 1 and nrods) 
Component title idormation from the input deck (formatting precedes this 
with “-”) 

Second Record Group of the Block (single record): nodes, nzmax, ncr, idbci, idbco 
nzmax - Maximum permitted number of axial conduction nodes 
ncr 
idbci - Inner surface boundary option 

- Index number of the ROD copy (a number between 1 and mods) 

= 0, Perfect insulator, or (for a ROD) no inner surface 
= 1, Constant HTCs and external temperatures 
= 2, Couple to specified fluid cells in one or more components 

- Outer-surface boundary option idbco 

Third Record Group of the Block (eight numbers per record): radrd( 1 :nodes) 
Radii of the temperature nodes in the conduction mesh radrd - 

Fourth Record Group of the Block (single record): nv 
nv - Number of variable “arrays” output to xtvgr.b 

Fifth Record Group of the Block (nvname records): vnameh, fflag 
vname - Decriptive name for the variable being output (formatting follows this 

string with and asterisk ) 
fflagh - Flag indicating size of the variable array 

= 1, axial surface node value (nzmax values) 
= 2, two-dimensional (2D) temperature node value (nzmax*nodes values) 
= - 1, scalar variable (1 value) 

Current values for vamel and associated values of fflagl are 
vnameh( 1 )=‘axial pos’ fflagh( 1)=1 
vnameh(2)=’struct temp’ fflagh(2)=2 
vnameh(3)=’inner htc regime’ fflagh(3)=1 
vnameh(4)=’inner Stanton Number’ fflag h( 4)= 1 
vnameh( 5)=’inner liq temp’ fflagh(5)=1 
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vnameh( 6)=’inner liq htc’ 
vnameh(7)=’inner vap htc’ 
vnameh(S)=’outer htc regime’ 
vnameh(9)=’outer Star: ton Number‘ 
vnameh( 1 O)=’outer liq temp’ 
vnameh( 1 l)=’outer liq htc’ 
vnameh( 12)=’outer vap htc‘ 

fflagh( 6)= 1 hrff 
fflagh(7)= 1 hrfv 
fflagh(8)=1 ihtf 
Bagh(9)=1 stnu 
fflagh( 10)=1 tld 
fflagh( 11)=1 hrfl 
fflagh( 12)=1 hrfv 

Signal Variable-Component Information Blocks 

First Record Group of the Block (single record header) ‘*signal’, 1, 1, ‘signal variables’ 
‘*signal’ - Component type is fixed to ‘*signal’ 
1 - Component number is forced to the value 1 
1 
‘signal variables’ - Title fixed as ‘signal variables’ 

- integer 1 (forced value for total number of cells) 

Second Record Group of the Block (single record): ntsv 
- Number of signal variables. This specifies the number of values 

written to xtvgr.b 
ntsv 

This general signal variable information is followed by “ntsv” blocks of detailed information. 

First Record Group of the Block (single record): “sv”, id, ‘:’ labsv, ‘*’, 0 
‘sv’ - 
id - 

7 

labsv - 

record begins with the literal string “sv” to mark it as a signal variable 
Input signal variable ID number (same as input variable idsv) 
colon used as a separator 
Label describing the function of this signal variable (generated internally 
by TRAC). Output formatting follows this label immediately with an 
asterisk (*) and then the integer zero (0) 

‘.) 

Second Record Group of the Block (single record): idsv, ism, ilcn, icnl, icn2 
idsv - Input signal variable ID number 
isvn - Signal variable parameter number, which indicates the source of the signal 

variable (see Table VI-1 in the TRACPFl-MOD2 User’s Guide, NUREG/ 

Depending on the value of “isvn”, this is either a coolant loop number, 
component number, trip ID number, or not used. 
Cell number of the first location where the signal variable obtains 
information 
Cell number of the last location where the signal variable obtains 
information 

CR-5673) 
ilcn 

icnl 

icn2 

- 

- 

- 

For each of these Signal variable blocks in xtvgr.t, one current time value of the signal variable is 
written to the file xtvgr.b per time edit. 
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Control-Block-Component Information Blocks 

First Record Group of the Block (single record header) ‘*control’, 1, 1, ‘control block output’ 
‘*control’ - Component type is fixed to ‘*control’ 
1 - Component number is forced to the value 1 
1 
‘control block output’ - Title is fixed to this string 

- integer 1 (forced value for total number of cells) 

Second Record Group of the Block (single record): ntcb 
ntcb - Number of control blocks. This specifies the number of values written to 

xtvgr.b on each time edit. 

Third Record Group of the Block (ntcb records): “cb”, id,‘*’, 0 
‘cb’ 
id 
‘*’ - asterisk (*) 
0 - the integer zero (0) 

- 
- 

record begins with the literal string “cb” to mark it as a control block 
Input control block ID number (same as input variable idcb) 

For each control block listed in xtvgr.t, one current time value of the control block is written to the 
file xtvgr.b per time edit. 

11.1.9. Detailed ASCII Output for Pipe 
This stage writes information to the detailed ASCII output file (trcout). The basic calling 
tree associated with this output task is summarized in Fig. A.10 of App. A. The stage is 
driven by Edit, which calls Sedit to write summary information for the time and Wcomp 
to output information on signal variables, control blocks, and component information. 
Actual component edits are produced one level down by subroutines such as Wpipe, 
which in turn uses Ecomp to convert data to the requested output units (calls to Uncnvt) 
and to write this data to the output file (trcout). The dominant communications channels 
are modules (system-wide and component-specific data structures) down to the calls to 
Uncnvt, which relies on its argument list. 

Unlike the restart dump file, the form of the output is very difficult to trace from the 
programming. However, the resulting output file is meant to aid the code user and is not 
intended as an interface to another program. As a result, no description of this file is 
provided here. This information can be obtained from App. E of the TRAC-PFl/MOD2 
User’s Guide? 

11.2. Special Considerations for a Tee Component 

The Tee functions as two Pipe components, one of which has a set of source terms in one 
cell (indexed by “jcell”) to account for flow from the other pipe. Using the source terms 
currently requires that the section representing the secondary side of the Tee be 
evaluated first to provide velocity information at the Tee junction. The source terms 
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involve passing and storing many pieces of information through an indirect 
communications route. Association of the information with a given Tee requires that the 
information be stored in the component-specific data structure-in this case, the module 
TeeVlt. However, the source terms are used at the lowest-level flow equation 
subroutines (Femom, TflDsl, TflDs, etc.) and must be communicated via a different 
route. The path chosen was to use variables with similar names in the module OneDDat. 
Transfer of information to and from this module can be seen in subroutines such as Teel 
and is described in detail later this section. 

The functional split of the Tee into two pipes introduces a component junction that is not 
included in the system-wide storage for junction information (BD and VSI arrays), but is 
included in the system-wide arrays associated with the network equation solution. This 
gives rise to a need for several important communicating variables. Boundary 
information for the low-numbered end of the Tee secondary is stored in the Tee-specific 
array, derived-data-structure tee& as the component ”teeAr( cco)%bd4”. This data 
structure is contained in the module TeeArray. The index variable ”CCO” (current 
component ordered) for the derived-type array teeAr is communicated to the Tee (and 
all other components) through the module ”Global”. Every driver routine for 
components (PreplD, OutlD, Post, etc.) sets the value of cco = compIndices(i), where ‘5“ 
is the position of the component in the calculational sequence. The array comphdices 
also reside in the module named “Global” and is set during input processing after Srtlp 
has determined the order for processing componenas. 

Because the side leg behaves exactly like a pipe in the network solution, the index of the 
junction index array (iou) element associated with the side leg must be communicated to 
the Tee and then on to lower-level solution subroutines. The Tee component routines 
(Teel, Tee2, etc.) obtain this value through the variable ”ntee”, and when driving lower- 
level routines (Preper, Inner, Poster, etc.) for the side leg, pass this value on through the 
variable “icme”. Both “ntee” and “icme” are contained in the module ”OneDDat”. 

The other significant considerations for the Tee beyond basic boundary communication 
are related to special source terms. This is first apparent during initialization with the 
call to Etee from Itee and later in a similar call from Tee3 in the postpass. Etee sets 
coefficients used by Femom for the implicit evaluation of momentum transport. The 
following equations express the contribution from the Tee side leg to momentum flux in 
the liquid motion equation at the right face of the joining cell. 

where 
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In this case, subscript "jN indicates the junction cell and subscript "Tee" indicates the 
junction face or first cell in the side leg as appropriate. Subscripts denoting liquid have 
been dropped from the velocities for brevity. Analogous equations define the values of 
r2v associated with gas momentum equation at the j+1/2 face, rll associated with the 
iiquid momentum at the j-l/2 (left) face, and rlv associated with the gas momentum at 
the j-1/2 face. The values of rll, rlv, r21, and r2v are returned from Etee to Itee or Tee3 
via the module OneDDat and copied into variables rtll, rtlv, rt21, and rt2v, respectively, 
which are all contained the module TeeVlt. These four TeeVlt variables are copied back 
to the corresponding OneDDat variables in subroutines Tee1 and Tee2 for use by the 
low-level subroutines evaluating the equations of motion (Femom and TflDsl). 

The problem of Tee momentum source terms is complicated by situations where the side 
leg connects to either the first or last cell in the primary leg. In this case, it is possible that 
a momentum source is produced at a component junction but that the motion equation 
at that junction is evaluated by the adjacent component. As a result, the contributions of 
the above flux term must be communicated to the adjacent component. The nature of 
the stabilizer motion equations requires that the contributions to the source flux be 
communicated in three parts. In the above example equation for fluxj,l/2, the 
combination that acts as the coefficient of the new time stabilizer (tilde) velocity at the 
Tee junction represents a coupling coefficient between two network junction velocities. 
This coefficient is obtained from the function Teemfl and is placed in the appropriate 
element of the network junction matrix for each motion equation [aov(iOl,i03) or 
aov(i02,i03) for gas motion and aol(iOl,i03) or aol(iOl,i03) for liquid motion] by Fewom. 
This becomes a special case in Femom for which the full equation is not evaluated but 
the relevant junction array elements are modified to include the effects of side-leg flow. 
The factor for the new time stabilizer velocity one face away from the component 
junction is computed by the function Teemf2 and must be passed through the boundary 
array [bd(i)%sxl for liquid or bd(i)%sxv for gas]. This must also occur for the remainder 
of fluxj+l/2. This flux consists of purely old-time quantities that are computed by the 
function Teemet and passed through bd(i)%tmsl for liquid or bd(i)%tmsv for gas. 
Because of the special nature of these boundary array terms, they are generated from 
Etee rather than JlD. 

Transfer of these Tee momentum source terms for evaluation of the basic motion 
equations (done in TflDsl) is less complex because all stabilizer velocities have been 
determined by this stage of the calculation. When a Tee side leg connects to a primary 
end cell, the necessary source terms are computed with a call from Tee1 to TBC1, which 
in turn uses the low-level function Teemom for the detailed source calculation. This 
occurs just after the final solution for the stabilizer velocities (Bkmom), placing the 
values in boundary array elements bd(i)o/otmsl for liquid and bd(i)%tmsv for gas. 

One other special momentum source adjustment must be made for the Tee. Although 
the Tee side leg is computed just like any Pipe, the velocities feeding into momentum 
flux terms from the face beyond its low-end junction need special evaluation. This is 
implemented as special boundary velocities computed as follows: 
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bd4%v12=cl a*vl(jcell)+c2a*vl(jcell+1) 
bd4%w2=c 1 av*w(j cell)+c2av*w(jcell+ 1) 
bd4%vlt2=c la*vlt(jcell)+c2a*vlt(jcell+l) 
bd4%wtZ=c 1 av*wtQ zell)+cZav*wt(j cell+ 1 ) 
bd4%vlto2=c 1 a*vlto(jcell)+c2axvlto~cell+ 1) 
bd4%wto2=cl av*vvto(jcell)+c2av*wto(jcell+l) 

Computation of the coefficients such as cla yields a value of zero if the associated 
velocity is directed away from the side leg (including the case where the side is angled 
away from the primary face associated with the velocity). Otherwise, the coefficient is 
equzl to the absolute value of the cosine of the side-leg angle [abs(cost)]. 

The above elements of bd4 are calculated with a call to JBD4 from Teel, before calls to 
Preper (evaluation of the stabilizer motion equations), and the components wt2 and vlt2 
of bd4 are updated directly by Teel after the calls to Bkmom (final solution for new-time 
stabilizer velocities.) 

Solution for stabilizer velocities also requires direct use of the coefficients cla, cZa, clav, 
and c2av. As with other such information in TeeVlt, they are copied to variables in 
OneDDat (ca=cla, cal=c2a, cav=clav, cal=c2av) for communication to low-level 
subroutines such as Femom. 

Communication of information for mass and energy source terms to the primary leg is 
currently very direct. Low-level subroutines such as TflDs have direct knowledge of the 
Tee array structure and access the needed side-leg elements directly. This is not a 
particularly flexible approach and should be replaced in later modernization tasks. 

11.3. Other ID Components 

The remaining 1D components follow the pattern of Pipe, with minor variations. Of 
these components, Valve and Prizer are the closest to Pipe because neither use special 
communicating variables in OneDDat. The valve carries additional variables in its 
variable-length table (module ValveVlt) to model the valve face. Four of these important 
variables are ivps (the face index at which the flow area is altered), ivty (the valve type), 
ivsv (the variable containing the signal variable or control block identifier acting as the 
independent variable in the valve tables), and avlve (area when the valve is fully 
opened). The full area is needed because the valve area is tabulated or calculated as a 
fraction of the fully open valve. The valve also carries extra arrays in the module 
ValveArray to model the valve tables. This additional information is input in RVLVE 
and Revlve; output by Wvlve, Dvlve, or Xtvvalv; and processed for each timestep by 
Vlvex (called from Vlvel when ibks=l). Vlvex transfers the information on the actual 
area and hydraulic diameter at the valve face to lower-level subroutines by directly 
altering the elements in the 1D geometry arrays "glDAr(cco)%fa(ivps)" and 
"glDAr(cco)%hd(ivps)" contained in the module GenldArray. 
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The pressurizer follows a similar pattern, but with less additional information. Input 
information such as the total heater power (qheat) is stored in the module PrizeVlt; qheat 
is used in the subroutine PRZRXl (called by PRIZRl when ibks=l) to compute a heat 
addition (or subtraction) for each cell and is communicated to low-level subroutines 
through modification of the array "glDAr(cco)%hlatw". This array normally is used as 
part of the communication of heat flow from all heat structures to each fluid cell. The 
logic in PRZRXl assumes that contributions from heat structures already exist and adds 
the contribution from the pressurizer heaters (or sprays). 

PUMP differs from the Valve and Prizer components in that it communicates key 
information to the calculation via OneDDat. General information on scalars such as 
pump speed are stored in the module PumpVlt, and special arrays defining pump head 
and torque curves and speed tables are located in the module PumpArray. Calculation 
of pump head and torque is performed by calls from Pumpsr to Pumpx. Pumpsr has the 
job of generating a pump momentum source term for use in the 1D hydro subroutines 
(Femom and TflDsl). This source is the specific work of the pump (in Joules per 
kilograms) and is stored in the variable smom in PumpVlt and transferred to the 
OneDDat variable ssmom by Pumpsr and Pump2 for use in evaluating the motion 
equations in Femom and TflDsl, respectively. Only one source term is generated 
because the model assumes homogeneous flow at a cell face with a pump source term. 
This modeling simplification currently requires that Femom and TflDs have knowledge 
of the component type through use of the module Flt. The nature of the SETS numerical 
method makes it ody  practical to consider implicit behavior of the pump source with 
respect to flow velocity. The derivative of smom with repect to velocity is calculated by 
Pumpsr and stored as dsmom in PumpVlt. It is copied to "dvjp" in OneDDat by Pumpsr 
and Pump2. The face at which the source ssmom is applied is communicated by the 
variable "msc"(in OneDDat), which is set as msc= 2 in Pump1 and Pump2. 

As noted in Sec. II.1.4, the subroutine Pumpsr is called by Preper and exists at a lower 
level than similar subroutines for other components. 

Break and Fill are considered to be 1D components to the extent that they use the same 
1D array structures to store fluid-state information. They communicate with other 
components through the boundary (bd) array but do not have the problem of interfacing 
with low-level hydrodynamic routines because they are fixed or tabular boundary 
conditions. Break 
evaluates necessary tabular information with a call from Break1 to Break and to Fill with 
a call from Fill1 To Fillx. Either of these components may be configured so that results 
must be obtained from multiple tables (pressure, temperatures, void fraction, etc.) using 
the same independent variable. Both use the following method. The first table is 
processed with Evltab, which takes as one of its input arguments the identifier for the 
signal variable or control block where the current value is the input to the table 
(independent variable, or abscissa). Evltab obtains that value by direct access to the 
control data structure (see Sec. IV.l), uses it in table evaluation, and returns the value 
through the argument list. Work is saved by evaluating any additional tables with a 
direct call to the subroutine LinintO, providing this value as an argument. 

Tables are handled in a manner similar to Valves and Pumps. 
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111. THEPLENUM 

The plenum is special in several respects but is still called by driver routines in the same 
loops as normal 1D components. The Plenum always has just one fluid cell and permits 
any number of connections to that cell from other active 1D components (no direct Break 
or Fill connections). To simplify treatment of the connections, all velocity calculations at 
such connections are forced to occur in the adjacent component. This is accomplished in 
subroutine Srtlp (called by Input), which places all plenums after all active 1D 
components in the computational order of a given loop. 

Interfaces between the plenum and other fluid components follow the pattern set by 
Pipe. Fluid conditions are passed through the boundary (bd) arrays, and velocity sign 
convention information is passed through ”vsi”. Both of these arrays are contained in 
the module named ”Boundary”. The major deviation in this regard is that boundary 
information is created by a plenum for use by another component through a call to 
Bdplen. Neither the subroutine Setbd nor J1D is used for this purpose. In the 
computational flow, calls to Bdplen occur in positions analogous to those of Setbd and 
J1D in Pipe driver routines. 

Information needed for the network matrix solution is communicated via the network 
arrays contained in the module Network, as with 1D components. However, indices 
needed to select the correct elements of these arrays are not communicated via the global 
“iou” array. That array predates the plenum and contad only enough space- for 
components with three junctions. The module PlenArray contains a derived-type array 
plenAr. One component of plenAr is the array ”iOjN, which contains the network indices 
for all connections in that component. For the ith junction of the current plenum, the 
network index would be”plenAr(cco)%iOj(i)”. The elements of these plenum index 
arrays are generated during initialization in the subroutine IPLEN. Unlike 1D 
components, the values contained in “iOjN are not communicated to the low-level hydro 
subroutines via intermediate variables. The plenum uses its own hydro routines and 
passes the index array directly through the argument list. 
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IV. VESSEL 

Vessel is heavily isolated from the other components in both computational (see App. A) 
and data flow. Information is received and returned by Vessel through Boundary and 
Network module arrays. This is important from the standpoint of adding new 1D 
components. When standard conventions are followed in setting the boundary and 
network array contributions from the 1D component, the interface to a Vessel is 
automatic. One important part of following these conventions is that the new 
components must be processed at the same stages of the computational cycle as other 1D 
components. As currently configured, Vessels must be processed after all other fluid 
components. This restriction will be lifted after the modularization of the network 
solution (see App. D). 

The Vessel component is scheduled for modernization after completion of the initial 
modernization tasks. As a result, a detailed description of data interfaces internal to the 
Vessel is not being provided in this document at this time. Vessel follows the same 
stages of computation documented for the pipe, with analogous calls to lower-level 
subroutines. Boundary information is returned from Vessel by calls to J3D, which is 
analogous to J1D- Within the calling tree for Vessel, incoming boundary information is 
translated to Vessel source arrays at the component routine level (Vssll, VsslZ, and 
Vssl3) and passed to hydrodynamic routines (Tf3Ds, etc.) so that the "bd" array is not 
seen at the same depth as in the 1D routines. Unlike the 1D component, fluid-state 

. information is passed to the hydro routines via the data structure (module VessEquiv) 
and passed via the argument list only to low-level state and property subprograms 
(Thermo, Htif, etc.). 

Establishing an interface between Vessel and a 3D kinetics package is discussed in the 
following section on heat structures. The mechanism used to extract fluid-state 
information from Vessel for the calculation of HTCs should be mimicked. 
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V. HEAT STRUCTURES 

Before dealing with programming related to the heat structure, it is useful to understand 
the history of development for that component. The low-level subprograms for I/O, 
initialization, material properties, and solution of the conduction equation originated 
with the rod conduction capabilities that were integral to the Vessel component in early 
versions of TRAC. Thus, it is common to see subprogram and variable names containing 
the string ”rod” at lower levels. Because these rods reside in the core region of Vessel, 
driver subroutines for the prepass and postpass had the names Core1 and Core3. 
Creating the heat-structure component in the mid-1980s expanded on the key 
conduction subroutines of both Vessel and a later 1D Core component, making both 
obsolete. However, naming conventions were never altered, and only the highest-level 
component routines (Cihtst, Htstrl, etc.) carry names directly associated with the 
component. Low-level subprograms and arrays carry names suggesting a rod 
(cylindrical) geometry, when in fact they also contain capabilities for modeling Cartesian 
geometry. 

The heat structure represents a special component class that is calculated separately from 
the fluid components during a given timestep and is explicitly coupled only to the fluid 
calculation. The structure participates in all stages of computation (Sec. I) except the 
fifth, which is devoted solely to the iterative solution of the basic flow equations. 
Discussions of multiple passes through components during stages 3-6 (see Secs. I and II) 
are not applicable to the heat structures. - The component-level drivers for initialization 
(Cihtst), prepass (Htstrl), and postpass (Htstr3) are called only once during each of these 
stages. 

The most significant data interface issues involve the details of the coupling between 
heat structures and fluid components. The code currently operates under two 
restrictions in this respect. Heat structures can never be connected to Plenum 
components or to Vessel cells that contain source terms. This simply reflects a 
development history in which time was not available to adapt to the Plenum data 
structure or include Vessel source velocities in the evaluation of heat-transfer 
correlations. 

Construction of the interface to fluid components begins with input from either Rhtstr or 
Rerodl of information on fluid cell connections. Variables containing the string “hcom” 
are integer arrays containing the component numbers for cells beginning one cell below 
the heat structure and ending one cell above the structure. The two extra cells are 
necessary when liquid levels must be detected to refine the sub-grid approximation of 
HTCs. Variables containing the string “hcel” are integer arrays containing the cell 
number corresponding to the same elements in the ”hcom” arrays. When one of these 
variable names (or pointers) ends with ”i”, it is storing information for the ”inner” 
surface of the structure, and when it ends with ”o”/ it is storing information for the 
”outer” surface connections. 
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More communication infomation is stored in the arrays lchci and lchco during 
initialization. This is generated by a combination of actions in subroutines Irodl, Lchpip, 
and Lchvss. For the ith connecting cell in the hcel-hcom information, the corresponding 
"lchci" array contains the component type in element lchci(2,i) (similar situation for 
lchco). The element lchci(1,i) contains necessary offset information to locate fluid state 
and property information in the component arrays. This is a requirement of the old 
container array structure, is obsolete for the 1D components, and will become obsolete 
for 3D components when that data structure is altered. 

The first active communication occurs in the prepass. Here, heat-structure computations 
are driven by the subroutine Htstrl. It begins the timestep by moving all new time heat- 
structure information into the old-time arrays. Next, it picks up fluid information with a 
call to Fltom, signaling the direction and scope of data movement by passing a value of 
one through the last argument. A call from Htstrl to Corel drives the bulk of the prepass 
calculations, and, as a final step, the information on HTCs and wall temperatures is 
passed back to the appropriate fluid cells with another call to Fltom from Htstrl. In this 
case, the reversed data flow and scope of information are signaled with a final argument 
value of -1. 

Communication of information between Corel and lower-level subroutines is 
dominantly through argument lists. Activity in the subroutine Corel is centered on the 
generation of HTCs. This is complicated by the need to maintain coefficient and wall 
temperature information on both the fine axial conduction mesh and the coarse mesh 
associated with the fluid cells. Corel begins with a call to TRIP, which checks to see if the 
trip has been set to activate the fine mesh. The next major action is a call to Mfrod, which 
sets the material properties for the structure. Corel proceeds to make any necessary 
adjustments in the fine mesh with calls to Shrink, Expand, and Fnmesh. HTCs and 
critical heat-flux temperatures are generated with calls to Zcore, Htvssl, and Htcor as 
needed. As these calls are made, Corel computes coarse node integrals for six 
quantities: (1) the product of liquid HTC and wall area (hlar); (2) the product of vapor 
HTC and wall area (hvar); (3) the product of liquid HTC, wall temperature, and wall 
area (hlatr); (4) the product of vapor HTC, wall temperature, and wall area (hvatr); 
(5) the wall area (watr); and (6) the product of subcooled boiling heat flux and wall area 
(hgamr). At the same time, coarse node averages are computed for the critical heat flux 
(CHF) and the temperature of the CHF. Corel concludes with any necessary calculations 
for heat sources, including possible calls to obtain reactivity feedback information 
(Rfdbk) and to compute the solution of the point kinetics equations (Rkin, also used for 
tabulated power sources). 

An understanding of Fltom is important to any near-term creation of interfaces to the 
fluid or heat-structure data. However, it should be noted that this method of 
communication will be replaced in the late modernization stages of system service 
activities described in App. D. 

Fltom contains nested DO loops that cycle over all elements of the heat structure 
(indexed by ncr=l,nrods) and over all active coarse axial levels within each element or 
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all fluid cells communicating with the element (indexed by nz=nzl,nzu). This sweeps 
over all cell interfaces between conduction and fluid cells. The loop structure has 
separate blocks for processing inner and outer surfaces. Any necessary shifts in the fluid 
cell location are computed based on the input array "idrod", which is used to shift the 
location of structure copies relative to the base location given in the "hcel" array (shift 
stored in the variable nzz). The actual transfer of information is accomplished in Piprod 
for 1D components or Vssrod for Vessels. One call is made to one of these subroutines 
for each communicating fluid cell. The final dummy argument for FLTOM is passed on 
as the final argument to Piprod and Vssrod to give them information on the scope and 
direction of data transfer. 

Piprod begins by determining the position of the connecting fluid component in the 
ordered component data arrays (stored in "i"). If the final argument (imfl) is negative, 
data are moved to the fluid component arrays, which is required to compute heat 
sources (hgam, hla, hva, hlatw, hvatw, and wat) and inverted annular flow (finan). This 
is accomplished with calls to the subroutine "IncrementGenld", which adds the current 
heat-structure contributions to whatever has already been contributed to the fluid cell 
from other heat structures. If "imfl" is 2, Piprod will bring new-time fluid temperatures 
(tln and tvn) into the heat-structure data (tlnr and tlnr) with two references to the 
function "GetGenld" (used only from the postpass). If "imfl" is one, Piprod loads all 
necessary fluid-cell geometry, fluid-state, and fluid-property information into the 
corresponding heat-structure arrays. In this process, a negative value of "ihcel" (fluid 
cell number) is used as a flag if the heat structure is oriented upside down relative to the 
fluid cell. This produces a different offset (ioff) for fetching the appropriate cell face 
velocity. 

Vssrod follows a pattern similar to Piprod, using the sign of the axial position index "iz" 
as a flag on reversed relative orientation. For negative "imfl", additional information is 
transferred to the Vessel database when the new reflood model is active. This is used in 
calculating interfacial drag and HTCs, which are consistent with conditions created by 
the heat transfer. All data transfers in Vssrod currently occur via direct FORTRAN 
assignment statements involving locations in the Vessel and heat-structure arrays. This 
will be changed to the use of subroutines similar to "GetGenld" and "IncrementGenld" 
when modernization of the Vessel and heat-structure data structures is completed. 

Heat conduction computations are driven in the postpass by subroutine Htstr3. It 
contains necessary operations for a timestep backup (oitno=-loo), but normally just 
updates fluid temperature information calling Fltom with the last argument (imfl) set to 
2 and drives the conduction calculation with a call to Core3. It completes the timestep 
with a call to Htstrp to compute the instantaneous power and energy content for all heat 
structures for use in energy balance calculations. 

The subroutine Core3 basically acts as a transition between data-structure and 
argument-based communication of information. It loops over all copies of the heat 
structure, calling Frod with all necessary physical information passed through the Frod 
argument list. Frod uses Hgap to obtain gap HTCs (if needed) and calls Rodht to 
perform the actual 2D transient conduction calculation. 
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VI. NONCOMPONENT MODELS 

There are six major noncomponent models in TRAC-M signal variables, control blocks, 
trips, constrained steady state, hydraulic-path steady-state initialization, and radiation. 
The radiation model is not currently functional, but will be reimplemented in the 3D 
modernization project. Documentation on the interface to the radiation model will be 
provided at that time. 

VI.1. Signal Variables, Control Blocks, and Trips 

Signal variables, control blocks, and trips are tightly linked both in the computational 
and data structures of the code. They are input to the code by a call to Rcntl from 
subroutine Input or on restart by a call to Recntl from Rdrest. Evaluation of these 
variables takes place once each timestep through a call to Trips at the very beginning of 
subroutine Prep. Trips loops over the evaluation of all signal variables and control blocks 
and trips a total of ”ntcp” times to permit iterative evaluation of controls. The user sets 
the variable “ntcp” in the input data file. A suibset of all signal variables, control blocks, 
and tribs may be evaluated during each of the ”ntcp” loops. Actual evaluation of signal 
variables is controlled by Svset, which in turn calls Svsetl to evaluate signal variables 
associated with 1D components, Svset3 to evaluate signal variables associated with 3D 
(Vessel) components, and Svseth to evaluate signal variables associated with heat 
structures. Once signal variables are evaluated, Trips calls Cbset to evaluate control- 
block functions 1 -  to 61 in Conblk and control-block functions 100 (time delay), 101 
([fcn(x)], and 102 ([fcn(xl, x2, xg)] during all three stages of a timestep. Trips numbered 
200 [proportional-integral (PI) controller] and 201 [proportional-integral differential 
(PID) controller] are evaluated with a call from Trips to Trpset. 

Values from signal variables, control blocks, and trips are accessed by most components, 
usually during the prepass. The trip status is easily accessed through use of the 
subroutine Trips. The ID of the trip to be queried is passed as the first argument to Trips. 
The second through fourth arguments return the set status (iset), the time since last reset 
(tlaps), and the difference between the input signal to the trip and its setpoint value 
(delsv). Unfortunately, no such subroutines are available to obtain values of signal 
variables and control blocks. Components needing this information access the control 
data structure directly. 

The control data structure currently is still based on integer pointers into container 
arrays. Integer values are stored in the array ”ict”, and reals are stored in “act”. The 
pointer to the beginning of data in each of these arrays is ”lcntl”, which is set as ”lcntl=l” 
in subroutine Input. Pointers to the arrays are still in the form used by old TRAC 
versions, which assume that integers and reals have the same length and physically 
occupy the same array space. This results in wasted space in ”ict” and ”act” but eases 
the transition to a modernized code. The layout of the control data arrays is provided at 
the beginning of Rcntl and reproduced on the following page. Coding in component 
routines to access values of signal variables or control blocks is dependent on a 
knowledge of this structure. Extraction of these values will become a much more 
transparent process after full modernization of the data structure. 
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The following tabulation provides a definition of control parameters stored in the act or 
ict array [Note: act(1) = act(lcntl)]. 

Contents of act(lcntl+pointer) 
to act(pointer+length-1) 

Dimension Data 
Total number of control-parameter 

storage locations required 
ntsv, 
ntcb, 
ntcf, 

ntse, 

ntct, 

ntsf, 

ntdp I 

ntsd, 

total number of signal variables 
total number of control blocks 
total number of control-block 
tabular data entries 
total number of trips 
number of control-parameter- 
evaluation passes 
total number of different 
signal-expression-trip signals 
total number of different 
trip-controlled-trip signals 
total number of different 
set-point-factor tables 
total number of trips that when 
set on generate a restart dumy, 
total number of trips that when 
set on initiate use of special 
time-step data 

Control-parameter-evaluation pass data 
- The following six parameters define 
each of the ntcp evaluation passes 

isvl, smallest signal-variable id 
number evaluated during the 
evaluation pass 

number evaluated during the 
evaluation pass 

block id number evaluated 
during the evaluation pass 

block id number evaluated 
during the evaluation pass 

number evaluated during the 
evaluation pass 

itpa, largest (magnitude) trip id 
number evaluated during the 
evaluation pass 

isv2, largest signal-variable id 

icbl, smallest (magnitude) control- 

icb2, largest (magnitude) control- 

itpl, smallest (magnitude) trip id 
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- After all the control parameters 
are read from input and the restart 
file, subroutine order rearranges 
each of the three control-parameter 
types in order of increasing id num- 
ber magnitude; the above six para- 
meters for each evaluation pass are 
then redefined with their corres- 
ponding control-parameter type 
list (do loop) index number 

Signal Variable Data 
- The following seven parameters 
define each of the ntsv signal 
variables 

idsv, the signal-variable id number 
isvn, the signal-variable parameter 

ilcn, the coolant loop number, 
number 

component number, or trip id 
number where the signal 
variable is defined 

icnl, the first-location cell number 
icn2, the second-location cell number 
6th parameter, previous value of the 

7th parameter, present value of the 
signal variable 

signal variable 

Control-Block Data 
- The following seventeen parameters 
define each of the ntcb control 
blocks 

idcb, the control-block id number 
icbn, the control-block mathematical 

icbl, the first input-parameter id 

icb2, the second input-parameter id 

icb3, the third input-parameter id 

cbgain, the control-block gain factor 
cbxmin, the minimum value of the 

control-block output parameter 
cbxmax, the maximum value of the 

control-block output parameter 
cbconl, control-block first constant 

operation number 

number 

number 

number 
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cbcon2, control-block second constant 
flagl, the control-block integration 

limit flag (a2) 
flags, the control-block output 

status flag (a21 
cbinl, the control-block first input- 

parameter value 
cbin2, the control-block second input- 

parameter value 
cbin3, the control-block third input- 

parameter value 
16th parameter, previous value of the 

control-block output parameter 
cbout, present value of the control- 

block output parameter 

Control-Block Tabular Data 
- Storage space is reserved here for 
the tabular data from all icbn=100 
l01,and 102 control blocks 

Control-Block parameter units label data. 
and trip parameter units label data and 
trip signal-expression constant units 
label data 

Trip Data 
- The following eighty parameters 
define each of the ntrp trips 

idtp, the trip id number 
isrt, the signal-range-type number 
iset, the trip-set-status number 
itst, the trip-signal-type number 
idsg, the id number defining the trip 

signal 
setp(i) for i=1,4; the ith set-point 

value 
dtsp(i) for i=1,4; the ith set point's 

de Lay time 
ifsp(i) for i=1,4; the ith set point's 

set-point-factor table id number 
18th parameter, delsv, the difference 

between the trip-signal value 
and the set-point value that 
turns the trip off 

this trip's signal 
19th parameter, the previous value of 

20th parameter, the previous subrange 
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integer number where the trip- 
signal value resided (l=left, 
2=center or right, 3=right) 

are defined by the following 
twelve parameters; the first 
pending set-status-change data 
is stored in the 21th to the 
32th parameters, the second is 
stored in the 33th to the 44th 
parameters, etc. 

parameter 1, the trip-signal sub- 
range number corresponding to 
the pending set-status change 

parameter 2, the problem time at 
which the trip is to be changed 
to this set status 

Five data pairs are stored here to 
save the problem time and the 
delsv (18th parameter) values 
over a past time interval cor- 
responding to the delay time of 
the set point that turns the 
trip off; these data are stored 
so that a delay time shift can 
be incorporated into the evalu- 
ation of delsv for the 18th 
parameter; in this way, the 
value of delsv goes to zero at 
the same time that the trip is 
turned off 

Up to five pending set-status changes 

Trip-Signal-Expression signal data 
- The following thirty-eight para- 
meters define each of the trip- 
signal-expression signals that 
are different 

idse, the trip-signal-expression id 
number 

inse, the number of subexpressions 
defining the signal expression 

incn, the number of different con- 
stants referenced by the sub- 
expressions 

for each of ten subexpressions 
are stored here 

parameter 1, the id number of the 

The following set of three parameters 
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arithmetic c. :-ator used by the 
subexpres sic 

parameter 2, the -I number of the 
subexpression's first argument 

parameter 3, the id number of the 
subexpression's second argument 

five constants used as arguments 
in the subexpressions 

Storage space is reserved here for 

Trip-Controlled-Trip signal data 
- The following twelve parameters 
define each of the trip-controlled- 
trip signals that are different 

idtn, the trip-controlled-trip id 

intn, the number of trips whose set- 
number 

status values define this trip's 
signal 

Storage space is reserved here for ten 
trip id numbers whose set status 
define the trip signal 

Trip Set-Point-Factw table data 
- The following twenty-three para- 
meters define each of the set-point 
factor tables that are different 

idft, the set-point-factor-table 

idsg, the id number for the set- 
id number 

point-factor table's independent 
variable 

inft, the nur:-?r of set-point-factor 
table e..rry pairs of data 

Storage space is reserved here for ten 
pairs of independent variable 
and set-point factor values of 
tabular data that define the 
set-point-factor table 

Trip-initiated restart dump and problem 
termination data 
- The following l+ntdp parameters 
define the trips that when set on 
generate a restart data dump and 
possible problem termination 

ndmp, the number of trip id numbers 
controlling dumps and exit 
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Storage space is reserved here for 
ntdp trip id numbers 

+8 O* ntrp 
+38*ntse 
+12* nt ct 
+23* ntsf 

Trip-initiated time-step data 
- The following fifteen parameters 
define each of the ntsd special 
time-step data sets 

ndid, the id number for this time- 

ntid, the number of trip id numbers 
step data set 

that initiate use of this 
time-step data 

five id numbers of trips that 
initiate use of this time-step 
data 

Storage space is reserved here for 

dtmin, the minimum time-step size 
dtmax, the maximum time-step size 
dtend, the problem time interval 

during which these time-step 
data are to be applied 

to be applied to the existing 
timestep for defining the time 
step to be used 

dtsof, the new timestep or the :-actor 

edint, the print edit time interval 
gfint, the graphics edit time interval 
dmpit, the restart dump edit time 

sedint, the short print edit time 
interval 

interval 

etime, the problem time corresponding to 
this control parameter data 

12+6*ntcp 15*ntsd 
+7*ntsv 

+17* ntcb 
+ntcf 

+ 6* ntcb 
. +ntrp 
+5* ntse 

+80* ntrp 
+38*ntse 
+12* ntct 
+2 3* nt s f 
+min (ntdp, 1) 

+ntdp 

ict(1) 

The total number of control-parameter storage locations required is 
ict( 1) =12+6*ntcp+7*ntsv+l7*ntcb+ntcf+6*ntcb 

+ntrp+5 *ntse+80*ntrp+3 8*ntse+ 12 *ntct 
+23 *ntsf+min(ntdp,l)+ntdp+l5*ntsd 

1 

PI- and PID-controller blocks have slightly different definitions for some of the 17 stored 
values. If kcb is the index pointing to the element just before the beginning of PI- or 
PID-controller block data, then the following definitions are in effect: 
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act(kcbt5) = first constant wt of the weighted summer (was icb3) 
act(kcb+l 1) = desired delta (At) error removal time constant (was flag3) 
act(kcb+l2) = first-order lag tau (2) time constant (was flags) 
act(kcb+l3) = previous delta (AF) error (was cbinl) 
act(kcb+l4) = previous (gain * time integral of delta F) (was cbin2) 
act(kcb+ 15) = previous (gain * delta F time derivative + delta f) (was cbin3) 

VI.2. Constrained Steady State 

There are three types of steady-state calculations: generalized steady state (GSS) for 
Stdyst=l or 3, constrained steady state (CSS) for Stdyst = 2 or 4, and static-check steady 
state (SSS) for Stdyst = 5 (Word 1 on Main Data Card 4). A GSS calculation evaluates a 
pseudo-transient timestep solution that asymptotically converges to the steady-state 
solution. Convergence is based on the maximum fractional change per second of seven 
hydraulic-solution parameters, all being less than the input FORTRAN variable EPSS. A 
CSS calculation is a GSS calculation where additional user-defined component-action 
adjustments are made by a PI controller to achieve a known and/or desired hydraulic 
steady-state condition. The nature of the available CSS controllers and their evaluation 
and database are described in this section. An SSS calculation checks for erroneous 
momentum and heat sources in a plant model by having TRAC not evaluate the pump 
momentum source and heat transfer so that fluid flow is expected to go to zero 
asymptotically. - 

A CSS controller adjusts an uncertain component-action state to achieve a better-known 
hydraulic condition in the steady-state solution. There are four types of CSS controllers 
from which the TRAC user can select. Each type can be applied to one or more 
components in a plant model. A type-1 CSS controller adjusts a pump impeller's 
rotational speed to achieve a desired fluid mass flow through the Pump component. A 
type-:! CSS controller adjusts a valve's flow-area fraction to achieve a desired adjacent- 
cell upstream fluid pressure or fluic xass flow through the Valve component's 
adjustable interface. A type-3 CSS con er performs one of three different adjustments 
(pump-impeller rotational speed of a component, flow-area fraction of a Valve 
component, or mass flow in or out of a Fill component) to achieve a desired fluid mass 
flow through its component that equals the fluid mass flow at a designated location in 
the plant model. A type-5 CSS controller performs one of four different adjustments to a 
Htstr component or its hydraulicallv :oupled Break components (hydraulic-channel 
fluid pressure at the inner or outer surface; heat-transfer area at the inner, outer, or both 
surfaces; thermal conductivity of the inner, outer, or both surface nodes or of all nodes; 
or heat-transfer area of both surfaces and thermal conductivity of all nodes) to achieve a 
desired single-phase fluid temperature or -phase gas volume fraction at a designated 
location in the plant model. The type-4 C,?Z controller was eliminated when the Stgen 
component was removed from TRAC. It djusted the secondary-side fluid pressure or 
the tube inner and outer heat-transfer areas of a steam generator to achieve a desired 
primary-side downstream-location liquid temperature. By remodeling a Stgen 
component with Pipe, Tee, and Htstr components, the functionality of the type-4 CSS 
controller is provided by a subset of the functionality of the type-5 CSS controller. 
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Each of the Ncontr user-defined CSS controllers requires one input-data record with four 
or five values read by Input (adjusted-component ID number, minimum and maximum 
range of parameter adjustment, the type or location of the monitored parameter that is to 
have a desired value, and the type of adjusted parameter). Each CSS controller's desired 
hydraulic-parameter value is input at its monitored-parameter location in the 
component data. CSS-controller data are not written to the dump/restart file and so 
need to be reinput by the Tracin file if the CSS calculation is continued with a restart. 
The number of CSS controllers and their input parameters can be changed during a 
restart. Components defining the desired hydraulic-parameter value for each CSS 
controller also need to be reinput by the Tracin file. This later requirement makes 
restarting a CSS calculation inconvenient. Generally, TRAC users evaluate a CSS 
calculation to steady-state convergence without doing a CSS-calculation restart. 

After reading a component's data from the Tracin file, subroutines Rpump, Rvalve, Rfill, 
and Rhtstr determine if their component is being adjusted by a CSS controller when 
Stdyst = 2 or 4. If a CSS controller is being applied to the component, the desired 
hydraulic-parameter value is obtained from its specified location for types 1, 2, and 5 
controllers. Type3 CSS controllers get their desired fluid mass flow each timestep from 
its specified location in the plant model. For the Ith CSS controller (where I = 1,2, . . . , 
Ncontr), a signal variable with ID number 9900+I is created to monitor the desired 
hydraulic-parameter value at its specified location, and a M-controller control block with 
ID number -(9900+I) is created to evaluate the adjustment of the component-action 
parameter. Signal variable ID numbers >9900 and -9999 and control block ID numbers 
<-9900 and -9999 are reserved for CSS-controller parameters defined internally by 
TRAC. 

The Kth type-3 CSS controller, which adjusts a Pump or Valve (where K = 1, 2, . . . , 
Nconts), requires a second signal variable with ID number 9900+Ncontr+K to monitor 
the pump-impeller interface or adjustable-valve interface fluid mass flow. The difference 
between the 9900+Ncontr+K signal-variable fluid mass flow and the 9900+I signal- 
variable fluid mass flow drives the PI-controller control block adjustment of the pump- 
impeller rotational speed or the valve adjustable-interface flow-area fraction. A M- 
controller control block is not defined for a type3 CSS controller, which adjusts the in-or- 
out fluid mass flow of a Fill component. That is because the 9900+I signal-variable fluid 
mass flow determines the Fill-component fluid mass flow directly for the next timestep. 
An absolute-value function control block with ID -(9900+1) of the 9900+I signal 
variable's fluid mass flow is defined instead. It is this absolute-value fluid mass flow 
with a positive sign for outflow from the Fill and a negative sign for inflow to the Fill 
that is defined as the adjusted fluid mass flow of the Fill component. 

There are Ncontp type-5 CSS controllers that adjust the hydraulic-channel fluid pressure 
at the inner or outer surface of an Htstr coniponent. They each have 50 elements of the A 
array reserved to save the ID numbers of all Break components that are hydraulically 
coupled to the adjusted Htstr. The fluid pressure is adjusted by the Htstr's PI-controller 
in all hydraulically coupled Break components. An ID list of Valve components that are 
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closed and not adjusted by a CSS controller is saved by Input in array Nwnvc(N) for N = 
1,2, . . . , Nvc - 50. This ID list is used by Fbrcss (called by Input) to determine all Break 
components that are hydraulically coupled to the Htstr. Breaks separated from the Htstr 
by these Valve components that are closed and not adjusted by a CSS controller are not 
considered to be hydraulically coupled to the Htstr component. 

Data storage for CSS controllers consists of the 5*Ncontr input-data values in the A array 
with pointer Lcontr, values of Ncontr and Nconts in common block Contrl, 7 values for 
each of the Ncontr+Nconts created signal variables, 17 values for each of the Ncontr 
created control blocks, 5O*Ncontp elements of the A arrays with pointer Lcontp for the 
Break components hydraulically coupled to type-5 CSS controllers, and 50 elements of 
the Numvc array in subroutine Input. 

The CSS-controller signal variables and control blocks are evaluated for each timestep by 
subroutine Prep, which calls Trips, which calls Svset for signal variables and CBSET for 
control blocks (see VI.1). Then subroutine Prep: 

1. for types-1 and -3 CSS controllers applied to a Pump component, calls PreplD, 
which calls Pumpl, which calls Preper, which calls Pumpsr to apply the PI- 
controller control-block-determined pump-impeller rotational speed to the Pump 
component; 

-2. for types-2 and -3 CSS controllers applied to a Valve component, calls PreplD, 
which calls Vlvel, which calls Vlvex to apply the PI-controller control-block- 
determined adjustable-valve interface flow-area fraction to the Valve component; 

3. for type-3 CSS controllers applied to a Fill component, calls PreplD, which calls 
Filll, which calls Fillx to apply the absolute-value control-block-determined in-or- 
out fluid mass flow to the Fill component; and 

4. for type-5 CSS controllers applied to a Htstr component, calls Htstrl, which calls 
Core1 to apply the PI-controller control-block-determined heat-transfer area and / 
or thermal conductivity to the Htstr component. For type-5 CSS controllers that 
adjust the hydraulic-channel fluid pressure at the inner or outer surface of the Htstr, 
Prep calls PreplD, which calls Break1 to apply the PI-controller control-block- 
determined adjustment of the pressure boundary condition for Break components 
hydraulically coupled to the Htstr component. 

Interactive feedback between CSS controllers needs to be considered by TRAC users 
when defining them. Their derived form assumes no interactive feedback. When the 
adjustments of two or more CSS controllers are strongly coupled by the thermal- 
hydraulic solution, their predicted controller adjustments may be bad, causing the 
solution to wander and not converge to the desired thermal-hydraulic parameter values. 
One such interaction has been programmed for in TRAC. When a type-5 CSS controller 
adjusts the fluid pressure where a type-2 CSS controller defines the desired value for an 
upstream fluid pressure, the pressure adjustment of the type-5 CSS controller also is 
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applied to the desired value for the type-2 CSS controller's upstream fluid pressure. The 
desired value of the upstream fluid pressure becomes a moving target for the type-2 CSS 
controller, just as the desired fluid mass flow at a specified location in the plant model for 
a type-3 CSS controller becomes a moving target when it varies each timestep. 

The CSS-controller-adjusted component-action parameter is part of the component data 
that are output to the restart-data Trcdmp file. Signal variables with ID numbers >9900 
and -9999 and control blocks with ID numbers <-9900 and --9999 are not output to the 
restart-data Trcdmp file. Restarting a transient calculation from the last (or any one) of 
these data edits will maintain the CSS-adjusted value of the component-action 
parameter at the start of the transient. That value remains constant until a user-defined 
component-action adjustment defined by the component data is applied during the 
transient calculation. 

These four CSS-controller types are programmed for user convenience. An equivalent 
controller (except for the heat-transfer area and thermal conductivity adjustments of a 
type-5 CSS controller) could be defined directly through input with signal variables, 
control blocks, and component actions of the TRAC control system. For controller types 
h a t  are not programmed, the TRAC user can define them through input as long as the 
controller's adjustment is an existkg component action (see Table 2-4 in the TRAC 
Theory manual3). Additional component-action and CSS-controller types could be 
programmed if their availability is required by the user community. 

VI.3. Hydraulic-Path Steady-State Initialization 

The initial therrnal-hydraulic steady-state solution estimate, user specified by the 
hydraulic-component input data, generally can be improved by the hydraulic-path 
steady-state initialization procedure in TRAC before the steady-state calculation is 
evaluated. Doing this generally reduces the computational effort of the steady-state 
calculation. The user selects this option by adding 2 to the value of Stdyst for a GSS or 
CSS calculation; i.e., Stdyst=l or 2 for a GSS or CSS calculation may be defined as 
Stdyst=3 or 4 for a GSS or CSS calculation with its initial thermal-hydraulic steady-state 
solution estimate internally initialized by TRAC during the initialization phase of a GSS 
or CSS calculation. 

Choosing the hydraulic-path steady-state initialization-procedure option requires the 
TRAC user to input hydraulic-path steady-state initialization data in the TRACIN file. 
These input data are defined by the input-data format description in Sec. 6.3.4 of the 
TRAC User's Guide! In specifying these data, the 1D hydraulic-component network of 
the plant model is partitioned into Npaths connecting and nonoverlapping 1D flow 
paths. All possible 1D flow paths in the network are considered unless the input 1D 
hydraulic-component data already define such a flow condition (and is not connected to 
a Plenum component) or the ID path's steady-state flow is not expected to be significant. 
Even 1D paths without flow may be considered in order to define an appropriate 
thermal condition (not defined by the 1D hydraulic-component data). The input 
hydraulic-component data need to be defined only as isothermal and no flow when 
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selecting the hydraulic-path steady-state initialization option. During the initialization 
phase, TRAC replaces the hydraulic-component gas volume fraction, phasic 
temperatures, and phasic velocities input data with the thermal-hydraulic parameter 
values specified by the hydraulic-path steady-state initialization data. 

Hydraulic-path steady-state initialization data are what the TRAC user knows or 
estimates the steady-state thermal-hydraulic solution will be along each of the 1D flow 
paths. Each 1D flow path has its entrance and exit mesh-cell interfaces defined where 
inflow and outflow occur to the path. A known or estimated steady-state phasic- 
temperature and phasic-velocities flow condition is defined at a single mesh-cell 
interface anywhere within the 1D flow path (inclusive of its end interfaces). The total 
and noncondensable-gas pressures may be defined as constant along each 1D flow path 
or defined by the 1D hydraulic-component data. A significant power source or sink 
along a subrange of mesh cells within the path also needs to be defined (such as for heat 
transfer between the primary and secondary sides of a heat exchanger). 1D flow paths 
begin or end at any mesh-cell interface as long as they are different interfaces and do not 
overlap internally with the cells of other 1D flow paths. However, 1D flow paths must 
begin or end at the internal-junction interface of a Tee or Sepd component, at a junction 
of a Plenum component, or at a source-connection junction of a Vessel component. The 
internal-junction interface of a Tee or Sepd component and the junction of a Plenum 
component must define the phasic-temperature and phasic-velocities flow condition of 
its 1D flow path. Plenum component junctions are assumed to have no steady-state fluid 
flow if they do not define the end interfacz o€-a 1D flow path. However, the fluid flow 
condition at Vessel-component source-connection junctions may be input specified by 
hydraulic-component data or initialized by hydraulic-path steady-state initialization 
data. This provides sufficient information for TRAC internally to initialize the steady- 
state thermal-hydraulic condition of all 1D hydraulic components along each 1D flow 
path, as well as all of the Plenum and Vessel components to which such 1D flow paths 
may be connected. 

The 1D hydraulic-component wall and Htstr component Rod or Slab temperature is 
defined by the input component data and is not initialized by the hydraulic-path steady- 
state initialization procedure. This also applies to the total and noncondensable-gas 
pressures unless they are initialized with a constant value for all cells of a 1D flow path. 
Structure temperatures and coolant pressures need not be initialized accurately because 
the steady-state calculation quickly determines their steady-state condition consistent 
with the gas volume fraction, phasic temperatures, and phasic velocities defined by the 
hydraulic-path steady-state initialization procedure. On the other hand, the gas volume 
fraction, phasic temperatures, and phasic velocities are the slowest to converge to their 
steady-state solution and usually require at least three or four convective-flow passes 
through each 1D flow path to converge to their steady-state values if a significant change 
is required in the initial thermal-hydraulic solution estimate. Providing a good initial 
estimate for the gas volume fraction, phasic temperatures, and phasic velocities can 
significantly reduce the TRAC evaluation time needed to satisfy the steady-state 
convergence criteria. 

Application Programming Inx? -face Document 
Rev. 0.4 

Page 48 



Subroutine Init, at the beginning of the TRAC initialization phase, calls Icomp, which 
calls Ihpssl to evaluate the hydraulic-path steady-state initialization procedure. 
Subroutine lhpssl performs two passes through all of the 1D hydraulic components. 
The first pass initializes the gas volume fraction, phasic temperatures, and phasic 
velocities-Gf all 1D hydraulic components dehed  b'y 1D flow paths. The second pass 
adjusts the gas volume fraction and phasic velocities donored from two-phase fluid 
mesh cells. This is done to conserve the mesh-cell interface fluid mass flow and the total 
input fluid-mass inventory of all hydraulically coupled 1D components to which two- 
phase mesh cells are a part. Both of these solution-estimate initialization passes are 
performed by Ihpssl before the regular two-pass initialization is evaluated by Icomp for 
all 1D hydraulic components. 

Each 1D hydraulic component is considered separately during the first pass of the 
solution-estimate initialization. For each component, while considering all of its 
hydraulically coupled neighboring 1D hydraulic components, a search of all the Npaths 
input-defined 1D flow paths is performed to determine if part or all of the component's 
cells lie within any of the 1D flow paths. When such a path is found, the path's defined 
thermal-hydraulic flow condition is determined to be either in the component or in a 
hydraulically coupled neighboring component. The latter option requires that the 
thermal-hydraulic flow condition be moved to one of the junction interfaces of the 
component. Moving the thermal-hydraulic flow condition to a junction interface of the 
component of interest requires incorporating fluid mass-flow and energy-flow sources 
and sinks to each Jcell from Tee or %pd component interna: junctions along the way, as 
well as incorporating power sources and sinks to all mesh cells along the way. Fluid 
mass flow, energy flow, and power sources and sinks also are incorporated when 
moving the thermal-hydraulic flow condition from the component junction to interfaces 
within the component in the process of defining the interface mass flow and cell energy 
throughout the component. The phasic temperatures then are determined from the cell 
energy, the phasic densities from the phasic temperatures, and the phasic velocities from 
the phasic densities and interface mass flow and area. 

The gas volume fraction a for two-phase fluid lies between a, and q,, where a = a, 
and V, = V, - (pL/pG), assuming no interfacial drag, and a = a, and V, = V, , 
assuming infinite interfacial drag. During the first pass of the initialization procedure, 
four fluid masses are summed over each region of hydraulically coupled 1D 
components: (1) the MASI fluid mass input by the 1D hydraulic-component data; (2) the 
MAST fluid mass based on a = 0,  cq,, or 1 and TG and TL initialized; (3) the MASM fluid 
mass based on a = 0 , G, or 1 and TG and TL initialized; and (4) the MASN fluid mass 
based on a = a, and TG = Tsat = TL initialized. This fluid-mass inventory information is 
used during the second pass of the initialization procedure to determine the a, I a I a, 
gas volume fraction in two-phase mesh cells. This conserves the input-specified fluid 
mass MASI by defining 

a = a,+(a,-a,).f , 
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where 

f = (MASI-MAST) / (MASM-MASN) . 

See Sec. 2.4.8.1 of the TRAC Theory Manual2 for further details. 

During the first pass of the initialization procedure, the thermal-hydraulic condition of 
each Plenum-component cell is initialized in Ihpssl. This is based on summing the 
connecting 1D flow-path fluid mass and energy inflows and outflows. The coolant 
enthalpy of the Plenum cell is defined by the ratio of the energy inflow to the mass 
inflow. This ratio should equal the ratio of the energy outflow to the mass outflow. A 
warning message is issued if the user-specified fluid mass and energy inflows and 
outflows differ by more than 1%. The summed fluid mass inflows and outflows are 
constrained to be equal by multiplying the inflows by f and dividing the outflows by f, 
where 

f = J(outflow)/(inflow) . 

The gas volume fraction and phasic temperatures are evaluated based on the cell 
enthalpy and pressure. Two-phase fluid mass conservation is applied during the second 
pass of the initialization procedure, as described above. The phasic velocities at each 
junction are defined by the phasic mass flows divided by the donor-cell phasic volume 
fraction times the phasic temperature-dependent density. 

After the 1D hydraulic-component gas-volume-fraction, phasic-temperature, and 
phasic-velocity distributions have been initialized from hydraulic-path steady-state 
initialization data in Ihpssl, their fluid mass and energy flows at all source connections 
to each Vessel component are evaluated by subroutine Ihpss3 called by Civssl. This 
determines the boundary conditions for defining mass- and energy-conservation matrix 
equations for each Vessel component. The net fluid mass flow is required to be zero for 
all source connections to a Vessel component. A warning message is printed if the 
summed fluid mass inflows and outflows differ by more than 1%. The summed fluid 
mass inflows and outflows are constrained to be equal by multiplying the inflows by f 
and dividing the outflows by f, where f = A(outflow)/(inflow) . The difference 
between the summed energy outflows and energy inflows is defined to be the power 
generated in the core region of the Vessel component. When a core region is not defined 
(when ICRU = 0 and ICRL = 0), this power is assumed to be generated over the entire 
Vessel component. The power volumetric generation rate is assumed to be constant in 
the structure material of each cell of the core region or Vessel [in the 1-FRVOL(I,J,K) 
fraction of the cell volume]. 

The mass-conservation matrix equation is derived from a simplified form of the phasic 
motion equations for liquid and gas. This is done to determine a 3D velocity distribution 
that satisfies the source-connection fluid mass-flow boundary condition, conserves net 
mass flow in each Vessel cell, and reasonably approximates the fluid flow pattern in the 
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Vessel component. The temporal, momentum-convection, and gravity terms in the 
motion equations are assumed to be zero, and the liquid and gas velocity distributions 
are assumed to be the same. This simplifies the phasic motion equations to a single 
approximate motion equation for each interface between cells and defines the cell- 
interface fluid mass flow by 

The cell-interface flow resistance is approximated by the sum of the form-loss and a 
flow-length drag resistance. Laminar flow rather than turbulent flow is assumed so that 
the cell-interface flow resistance is a constant rather than proportional to the magnitude 
of the interface fluid velocity. The mass-conservation matrix equation requires that the 
net coolant mass flow of each Vessel cell be zero: 

Substituting the simplified motion-equation definition of fluid mass flow between Vessel 
cells gives 

c Ai - * ( P n - P i )  = 
ithface Rl 

where P, is the coolant pressure in Vessel cell n and Pi is the fluid pressure in 
neighboring cell i on the other side of interface i. For a Vessel component with a total of 
N cells, this is the Nth-order mass-conservation matrix equation 

Because of fluid mass conservation over the entire Vessel component, as well as in each 
of its N cells, the matrix equation has only N-1 unique equations and N pressure 
unknowns. The Nth cell equation is replaced with the pressure-normalization 
requirement PN = lo6 (in Pa units) to provide N unique equations. This arbitrary 
normalization of the evaluated pressure distribution is done because the pressure 
difference between cells, which determines the fluid mass flow across a cell interface, is 
the result of interest being solved for. TRAC also checks that each Vessel cell has mass- 
flow coupling to at least one of its six neighboring cells. Without such coupling, the 
pressure solution in an isolated cell is arbitrary, causing the matrix solution to fail. 

Vessel cell-interface fluid mass flows are determined by m = -AP . A/R based on the 
above pressure-distribution solution. Evaluating their fluid velocities requires defining 
and solving the fluid energy-conservation matrix equation to determine the gas void 
fraction and phasic temperatures. Then the fluid density can be evaluated and the fluid 
velocity determined from the fluid mass flow and donor-cell fluid density. 
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The energy doniwd by the fluid mass flow is the product of the fluid mass flow and 
enthalpy 

The fluid energy conservation equation for each Vessel cell n is 

[ x m i . h n - z m i -  i] = [ cm ah- Em . h  +PowDen. 
out in n insodcori out'soucori 1 n 

where 

PowDen = [ m h -  xm - h ]  /(ma . ( l O - l o , ~  )) 
insodcon out'sodcod vessel 

'olStr, I 

if cell n is in the core region or Vessel (when ICRU = 0 and ICRL = 0) and is zero - 
otherwise, and 

VolStr, = Vol, , (1 - FRVOL,) , 

where Vol, is the volume of cell n and FRVOL, is the input-specified fluid volume 
fraction of cell n. 

A Vessel cell with energy flow out only through source connections defines an energy- 
conservation equation that cannot be solved for the fluid enthalpy of the cell. TRAC 
avoids this difficulty by using the cell enthalpy to define the outflow energy through 
source connections. The above equation becomes 

+ PowDen . VolStr, . [ outsoucori out in  n n 
m - h n + ~ m i . h , - ~ m i . h i  

For a Vessel component with N cells, this is the Nth-order fluid energy-conservation 
matrix equation 

which can be solved for the enthalpy distribution. The enthalpy of an isolated Vessel cell 
with no mass flow coupling to its neighboring cells and without source connections is 
arbitrary. TRAC avoids this by redefining its matrix-row equation in matrix to 
require its enthalpy to equal the evaluated enthalpy in the cell above (below, if tbL. cell is 
in the top level). 
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The enthalp y-distribution solution is converted to gas-volume-fraction and phasic- 
temperature distributions in the same manner as for 1D components. Two-phase gas 
volume fractions are adjusted to conserve the fluid mass inventory input for each Vessel 
component by the procedure described above for 1D components. m e n  the donor-cell 
fluid density is evaluated based on the gas volume fraction and phasic temperatures to 
evaluate the interface velocity 

from the interface mass flow and flow area. 

All of the above evaluations for a Vessel component are performed in subroutine Ihpss3. 
Array storage for the mass- and energy-conservation matrix equations is that already 
reserved in the A array for the multiple-Vessel pressure matrix equation that is evaluated 
during the outer-interative solution. See Sec. 2.4.8.2 of the TRAC Theory Manual3 for 
further details concerning the thermal-hydraulic initialization of a Vessel component. 

VI.4. The Radiation Model 

This model is not currently installed in TRAC-M. Documentation will be provided after 
its reinstallation. 
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APPENDIX A 

SUBPROGRAM CALLING TREES 

This appendix contains basic calling trees associated with TRAC-M to aid in the 
understanding of both computational flow and the flow of data through the program. 
Figure AS provides information on the branching at the highest levels of the program. 
The remaining figures provide basic information on the trees for the key stages of the 
program and breakouts of the component level trees for these stages where appropriate. 
These stages, as outlined in Sec. I, and the associated figures are as follows: 

1. Input of initial component data (e.g., Rpipe), Fig. A.2; 

2. Input of restart information for a component (e.g./ Repipe), Fig. A.3; 

3. Initialization of component-dependent variables (e.g., Ipipe), Fig. A.4; 

4. Prepass(Prep), including the stabilizer momentum equation solution, evaluation 
of various old-time quantities and other bookkeeping at the beginning of each 
timestep (e.g., Pipel), Fig. AS; 

5. Iterative solution of basic flow equations (Hout) for each timestep (e.g., Pipe2), 
Fig. A.6; 

6. Postpass (Post), including the solution of stabilizer mass and energy equations, 
solution of the conduction equations, and other computations to complete each 
timestep (e.g., Pipe3), Fig. A.7; 

7. Output of data to the restart dump file (e.g., Dpipe), Fig. A.8; 

8. Output of data to the XTV graphics files (e.g., Xtvpipe), Fig. A.9; 

9. Output of data to the ASCII detailed edit file (e.g., Wpipe), Fig. A.10. 
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INPUT i-' I 

TIMCHK 

PREP 

GRAF 

HOUT 

POST 

DMPIT 

I PRElNPt 

E- 

I 

TlMSTP 

EDIT 

XTVDR 

OUTER 

PSTEPQ 

TRAC 

I COMP 

XTVlNlT 

C m C L  

IGRAF 

I STEADY 1 
TIMCHK 

TIMSTP 

GRAF 

XTVDR - 

I DMPIT I 

Fig. A.1. Program TRAC calling tree. 
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SUBROUTINE I 
RDCOMP 

1 RTEE 

1 RTURB 

{ RPLEN 

Fig. A.2.a. Top level of input deck processing (Rdcomp). 
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SUBROUTINE RDCOMP 
(BREAKOUT) 

I 

READ1 

I RPUMP I 

{ WlARN 1 
{ THERMO I 

ISCLTEJL t 

I UNSVCB 1 

I RTEE 1 
[READIt- 

READR 

Fig. A.2.b. Breakout of top level of input deck processing (Rdcomp). 
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SUBROUTINE RDCOMP 
(BREAKOUT) 

- 
SI DPTR 

LlNlNTO 

l T H E R M O 4 -  

I RBREAK I 
I I 

READ1 

S1 DPTR 

WRVLT 

S1 DPTR 

SCLTBL 

LlNlNTO 

WRVLT - 
WMXYTB 

SCLTBL 

Fig. A.2.b. Breakout of top level of input deck processing (Rdcomp) (cont). 
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SUBROUTINE RDCOMP 
(BREAKOUT) 

I I 

1 I I 1 
I 

READ1 

S1 DPTR 

SCLTBL 

LlNlNTO 

UNSVCB 

WMXVB 

RCOMP 

WRVLT 
LOADN 

WARRAY 

WlARN 

- 

SCLTBL 

WARRAY t WiARN 
LOADN 

WARRAY 
WARRAY - 
WlARN 

THERM0 

Fig. A.2.b. Breakout of top level of input deck processing (Rdcomp) (cont). 
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SUBROUTINE 1 1 1  
RSTVLT BFlN 

Fig. A.3. Top level of restart input (Rdrest). 
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INlT 

ICOMP XTVlNlT XTVDR CXTVOW CXNCL CXTVCL - 

Fig. A.4. Top level of data initialization input (Init). 
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I I I I 

CBSET PUMP1 

VLVEl 
TRPSET 

BREAK1 

TURBl 

HTSTRL 7 
RADMODl 

RVSLCM 

VSSLl 

Fig. A.5.a. Top level of solution prepass (Prep). 
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I SUBROUTINE PREP 
(Breakout) 

I 
PREPlD Lr' I PIPE1 

1 BKMOM I 

1 SAVBD 1 LH FEMOM 
I- 

Fig. A.5.b. Breakout of top level of solution prepass (Prep). 
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I SUBROUTINEPREP I 
(Breakout) 

PREP1 D P 
PUMP7 

BKMOM F-7 
SAVBD -P 
PREPER 

- TRIP 

4 7 1  - EVLTAB 
LlNlNT 

PUMPD 
FEMOM 1 PUMPX GETCRV 

1 WALL I - EVLTAB LININT 

{ MPROP I 
4 PUMPSR 

HTPIPE HTCOR 

{ ~ FLUX 1 
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SUBROUTINE PREP 
(Breakout ) 

TBC1 

EVFXXX TEElX 

JBD4 
W A L L  

PREPER 
MPROP 

- 1  

HTCOR HTPIPE 

SETBD 

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont). 
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(Breakout) 

VLVE1 

VLVEX 9 
SHlFTB 

PREPER 

FEMOM 

PUMPSR 
FGl.h=l 

I 

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont). 
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I SUBROUTINEPREP I 
(Breakout) 

BREAK1 w 
BREAKX 

H SHlFTB 

LlNlNTO 

,+, 

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont). 
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I SUBROUTINEPREP I 
(Breakout) 

I 

FILL1 0 
,&, 

EVLTAB 
TRIP 

I 

EVLTAB 
TRIP 

I 

SHIFTB 
LIN I NTO 

THERM0 
FPROP 

MIXPRP 

+, 

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont). 

Application Programming Interface Document 
Rev. 0.4 

Page 69 



I SUBROUTINEPREP 1 
(Breakout) 

I 
PREP1 D 

I 
I 

I 

SAVBD 

HTPIPE FEMOM 

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont). 
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I SUBROUTINEPREP I 
(Breakout) ," PREP1 D 

1 VOLV 1- 
I WALL I- 
pGG-MpRop- 

GETCRV HTPIPE - 

VI)_ 

I BKMOM f 

I SAVBD 1 
pi- 

-1 PREPER c 
I SEPDX I 

JBD4 EVFXXX 

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont). 
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I SUBROUTINE PREP 

- 
FLUX 

- 

(Breakout) 
I 

LlNlNT 
- GETCRV 

PUMPD - 

TURB1 Q 

+GG-l - 

I I -  

LlNlNT 

PREPER 

EVFXXX 

PLEN1 I 

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont). 
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SUBROUTINE PREP 
(Breakout) 

I 
HTSTRl 

I CORE1 

HTSTRV a 
MPROP El 

HWEBB 

I SHRINK t 

4 ZCORE 

I RFDBK t 

I 

4 MFROD 1 
1 FNMESH I 

1 RKlN I 

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont). 

Application Programming Interface Document 
Rev. 0.4 

Page 73 



1 SUBROUTINEPREP I 
(Breakout) 

PREP30 

VSSL1 

DVPSCL 

IFSET 

LlNlNTO 

CIF3 

FEMOMX 

FEMOMZ 

Fig. A.5.b. Breakout of top level of solution prepass (Prep) (cont). 
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1 SUBROUTINE 1 
HOUT 

/OUTER/ 
I 

OUT1 D 6 
SGEFAT 

I I 

{ WCOMP 1 
TRBPST RDPTRS 

PIPE3 
PUMP3 

PLEN3 

SGEFAT 

HTSTR3 

Fig. A.6.a. Top level of solution outer iteration (Hout). 

Application Programming Interface Document 
Rev. 0.4 

Page 75 



1 SUBROUTINE HOUT 
(BREAKOUT) 

- CELLAV 

T F l D S l  

TFIDS 

THERMO 

CELLAV - 
HTlF - 

- 
- 
- 

0 N1123C 

T F l D  - 
J1D 

T F l D S l  

TFlDS 

TFlDS3 

THERMO T F l D  -- ON1123G - 
CELLAV 

1 TFlD - 
HTlF 

J l D  - 
TFlDSl  

- 

- - 
{T -. 

-. 
-. 

EV Fxx - TEE1 

C ELLAV - ON1123C - . SEPDl - - 
HTlF - -- INNER TEE2 T F l D  

J1D 

- 
- TFlDS1 - - 

TFlDS - 
TFlDS3 - 

J1D BRE AK2 

TFlD 

J1D 

- 

TF1 DS1 
P LEN2 

Fig. A.6.b. Breakout of top level of solution outer iteration (Hout). 
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SUBROUTINE HOUT 
(BREAKOUT) 

I OUT3D I 
TF3DS3 

- VSSSSR 

-_ SETBDT 
RVSLCM VSSL2 

MATSOL 

Fig. A.6.b. Breakout of top level of solution outer iteration (Hout) (cont). 
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SUBROUTINE HOUT 
(BREAKOUT) 

I-)--( W E E  

WCOMP a 
TRIP 

ECOMP 
14 WPUMP 

ECOMP 

UNSVCB 
WTURB 

WPLEN WHTSTR 

Fig. A.6.b. Breakout of top level of solution outer iteration (Hout) (cont). 
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1 SUBROUTINE HOUT 
(BREAKOUT) 

i 
PIPE3 PUMP3 

SAVBD CONSTB SAVBD CONSTB 

- THERMO 
- BKSSTB EVFXXX POSTER 

- THERMO 
POSTER - BKSSTB EVFXXX 

- CYLHT CYLHT - 
- POWINT 
- FPROP 

SETBD I SETBD EVALDF I 



SUBROUTINE HOUT 
(BREAKOUT) 

1 VLVEB I 

- THERM0 
- BKSSTB FOSTER 

THERM0 

FFROP 

I FILL3 

Fig. A.6.b. Breakout of top level of solution outer iteration (Hout) (cont). 
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. 

SUBROUTINE HOUT 
(BREAKOUT) 

BKSSTB - 
CYLHT - POSTER SETBD 
POWINT 7 

POSTER EVFXXX 

OFFTKE SETBD 

EVALDF 

THERM0 

CYLHT 

FPROP 

Fig. A.6.b. Breakout of top level of solution outer iteration (Hout) (cont). 
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BKSSTB 

1 SUBROUTINE HOUT 
(BREAKOUT) 

3* TURB3 

CONSTB 

POSTER SETBD 

THERMO 

FPROP ASTPLN 

STBMPL BDPLEN 

Fig. A.6.b. Breakout of top level of solution outer iteration (Hout) (cont). 
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SUBROUTINE'HOUT 
(BREAKOUT) 

1 POST I 
I 

BAKUP 
THERM0 
FPROP 

POST3D 

RVSLCM - 
BKSTB3 
MIX3D 

FPROP 
EVALDF 
GVSSL2 
BKSTB3 

STBME3 

HTSTR3 

CORE3 

Fig. A.6.b. Breakout of top level of solution outer iteration (Hout) (cont). 
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I SUBROUTINE I 
POST CONSTB - 

SAVBD - 
NFXXX - 
POSTER - 
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Fig. A.7.a. Top level of solution postpass solution (Post). 
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Fig. A.7.b. Breakout of top level of postpass solution (Post). 
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Fig. A.7.b. Breakout of top level of postpass solution (Post) (cont). 
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Fig. A.7.b. Breakout of top level of postpass solution (Post) (cont). 
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Fig. A.7.b. Breakout of top level of postpass solution (Post) (cont). 
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Fig. A.7.b. Breakout of top level of postpass solution (Post) (cont). 
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Fig. A.7.b. Breakout of top level of postpass solution (Post) (cont). 
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Fig. A.8. Output of restart data (Dmpit). 
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Fig. A.10. Detailed output (Edit). 
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APPENDIX B 

SUBPROGRAM DATA INTERFACES 

The full data interface for a given subprogram includes variables passed through the 
argument list, variables from cornmon blocks and modules used, and variables available 
as global variables in a module that contains the subprogram. The description of this full 
interface for all subprograms is a very lengthy process and becomes obsolete as the 
program evolves. Rather than provide this description directly, we have elected to save 
space and maintain flexibility with a different approach. Definitions of variables are 
provided in App. C or, in special cases, in the subroutine headers themselves. Lists of 
communicating variables and their paths of communication are generated with a special 
program (datainfo). Source code for the program and results from executing it with the 
latest version of TRAC-M are provided on an attached disk. 

B.l. Using the Program 

The program (datainfo) was designed for more general use than simply TRAC analysis 
and should be supported by a driving script for most convenient use. It must be 
executed within the directory containing all source code to be processed and requires a 
subdirectory named VarInfo. The program reads a file named DoFiles that must be 
created in VarInfo to obtain a list of files to be processed. For the most basic usage, which 
is analyzing the communications for a full program, the steps are fairly simple. Tlefore 
the first such analysis, the source code has been compiled to create an executable named 
"datainfo", and this executable has been in a directory contained in the PATH 
environment variable. First, change into the directory containing all source code, and 
make the necessary subdirectory: 

mkdir VarInfo 

Next, create the list of files to be processed by redirecting the output from the list 
command: 

Is *.f * .BO *.h >! VarInfo/Dofiles 

Either the "*.f" or "*.f90N can be skipped in the above command if it is not appropriate. 
Now the communications analysis can be performed by typing: 

datainfo 

When the program has completed execution, the ".info" files generally will be removed, 
and single files with all information on communicating variables may be created. 
Execute the following commands: 

cd VarInfo 
rm *.info 
cat *.hdr > full.hdr 
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The file ”full.hdr” will be very long for a code like TRAC-M. Check the size and 
consider the consequences before sending it to a printer. 

B.2, Description of the Program ”datainfo” 

Initial processing is driven by the subroutine “getlines” and results in the creation of 
intermediate files with the suffix ”.info” (left in VarInfo), containing information on all 
communicating variables defined in program units or include files. The prefix of these 
intermediate file names is the name of the program unit, or include file. In addition, it 
creates a file in VarInfo named FileList, containing a list of all files containing source code 
to be processed for final information on communication interfaces. 

- 

The subroutine ”mkHeaders” drives the final creation of header files containing a 
description of each variable communicating information into or out of a given 
subprogram. Final documentation is structured as header information for the 
subroutine or function-listing variables providing input to the subprogram, variables 
carrying output, and variables that are contained in the argument list of a called 
subroutine. Thus, these could be either input or output. This program currently does 
not iterate over subprograms to determine the true input/output status of such 
variables. Zn addition, the program may be unable to track the true input or output 
functionality of a variable when conditional branches are present. However, it produces 
warnings in such cases. Files containing this header information have a prefix matching 
the subprogram name and a suffix of ”.hdr”. The processing operates under the 
following restrictions and assumptions that 

EQUIVALENCES are not processed; 

Not all changes to variable values caused by optional arguments such as “read =I’ 

in INQUIRE are detected; 

The program being processed must successfully compile under Fortran 90; 

The ONLY attribute is not applied in a USE statement, nor is the rename feature 
applied; 

No variables in the MODULE are PRIVATE. 

The program “datainfo” was tested in three ways. For each identified class of statements 
to be processed, a sample statement was inserted into one member of a set of test files 
and the names of these files placed in ”DoFiles”. As a second-level test, the source of 
”datainfo” was processed by ”datainfo”. This tested the processing of a fairly rich mix of 
Fortran 90. Results were carefully reviewed based on recent knowledge of the program. 
As a final step, the communications analysis was applied to Version 2.40 of TRAC-M. 
Too much information was generated for a thorough analysis of results. This test simply 
checked for fatal errors in ”datainfo” and for obviously bad results for randomly 
sampled TRAC subprograms. 
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The existence of full source code for this tool permits adaptation to future needs with 
relative ease. Recommended changes include complete coverage of optional arguments 
to I/O statements such as INQUIRE, accommodation of USE options and PRIVATE 
variables, and an option to continually determine the status of variables found in Call 
statements. Additions to improve processing of usage within conditional statements are 
possible but require a higher investment of time. The subroutines outHeader and outVar 
should be replaced (or supplemented) by subroutines producing equivalent HTML files. 
This would provide cleaner formatting of the results within documents and would open 
the option for a browser-based document with links to variable definitions and to 
associated source code. 
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APPENDIX C 

VARIABLE NAMES 

C.1. Standard 1D Array Variable Names 

The following list provides the standard variable name [the spatial location (cell center 
or cell edge)], and a definition of the variable. Variables in or passed from geometry and 
fluid-state arrays follow a fairly standard naming convention. 

One naming convention worth noting is the use of "v". This dates to a time when steam 
vapor was the only gas followed in a TRAC calculation. Now, mixtures of vapor and 
noncondensable gas are possible, and variables using this "v", unless otherwise stated, 
apply to the total gas mixture. Another convention that must be treated with caution is 
the pattern for new- and old-time variables. When variables ending with 'Inr' (e.g., pn, 
alpn, tln, or tvn) are present, variables with the root name (e.g., p, alp, tl, or tv) are 
evaluated at the old time. However, in many low-level subroutines, only the root name 
appears, and no inference should be made about the time level. 

- 

Additional confusion in the time level was introduced during the evolution of TRAC. In 
rare cases, the root name (vlt, wt,  hig, hil, or cppc) refers to the new-time value, and the 
addition of the suffix "or' denotes old-time values. Much of this problem has been 
eliminated through the Dual-derived type (see Section C.2) +However, some 1ocaEusage 
of this "0" convention persists and has been marked for future elimination. 

- 

Variable 

alpmn 

alpmx 

alpn 
alp0 
alv 

alve 

alven 

alvn 

am 
ara 

aran 

alp 
Location 
Center 
Center 

Center 

Center 
Center 
Center 

Center 

Center 

Center 

Center 
Center 

Center 

Definition 
Old void fraction. 
Minimum value of void fraction among a cell and all -of its 
neighbors. 
Maximum value of void fraction among a cell and all of its 
neighbors. 
New void fraction. 
Void fraction at the start of the previous step (step n-1). 
Product of the old flashing interfacial HTC and the interfacial 
area. 
Product of the old liquid-side interfacial HTC and the 
interfacial area. 
Product of the new liquid-side interfacial HTC and the 
interfacial area. 
Product of the new flashing interfacial HTC and the 
interfacial area. 
Noncondensable gas mass. 
Old stabilizer value for macroscopic noncondensable gas 
density ("Da) . 
New stabilizer value for macroscopic noncondensable gas 
density ("Da). 
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arc 
are1 
areln 
arev 
arevn 
rtrl 
arln 
am 
a m  
bit 
bitn 
chtan 

chti 

chtia 

chtin 

cif 
cifn 
cl 
conc 
concn 

Cpv 

dalva 

dfldp 
dfvdp 
dhldz 
dr 
dx 
ea 
ean 
el 
elev 
eln 
ev 
evn 
fa 
favol 
finan 

fric 

Cpl 

cv 

Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Either 
Either 
Center 

Center 

Center 

Center 

Edge 
Edge 
Center 
Center 
Center 
Center 
Center 
Center 
Center 

Edge 
Edge 
Edge 
Center 
Center 
Center 
Center 
Center 
Center 
C -.?er 
c - -  _ a  

C.::e5: 
Edge 
Center 
Center 

Edge 

Solute macroscopic density: (l-”)Di c . 
Old stabilizer value for (l-”)Diei. 
New stabilizer value for (l-”)Diei. 
Old stabilizer value for ”Dgeg. 
New stabilizer value for ”Dgeg. 
Old stabilizer value for (1-”1 Di (macroscopic liquid density). 
New stabilizer value for (l-”)Di. 
Old stabilizer value for ”Dg (macroscopic gas density). 
New stabilizer value for “Dg . 
Bit flags from previous timestep. 
Bit flags for current timestep. 
New value of noncondensable gas interfacial HTC times 
current volume interfacial area. 
Old value of vapor-side interfacial HTC times current 
volume interfacial area. 
Old value of noncondensable gas interfacial HTC times 
current volume interfacial area. 
New value of vapor-side interfacial HTC times current 
volume interfacial area. 
Old interfacial drag coefficients. 
New interfacial drag coefficients. 
Liquid conductivity. 
Old-solute-mass-to-coolant-mass ratio. 
New-solute-mass-to-coolant-mass ratio. 
Liquid specific heat at constant pressure. 
Gas specific heat at constant pressure. 
Gas conductivity. 
Derivative of alv with respect to void fraction (currently 
always set to zero). 
Derivative of liquid velocity with respect to pressure. 
Derivative of gas velocity with respect to pressure. 
Gravitational head force caused by void gradient. 
Storage array for thermodynamic derivatives and enthalpies. 
Cell length in flow direction. 
Old noncondensable gas-specific internal energy. 
New noncondensable gas-specific internal energy. 
Old liquid-specific internal energy. 
Cell-centered elevations. 
New liquid-specific internal energy. 
Old gas-specific internal energy. 
New gas-specific internal energy. 
Cell-edge flow area. 
Cell-centered flow area. 
Inverted annular regime weighting factor (currently not 
used). 
Additive friction factors (generally for form losses). 
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fsmlt 
gam 
ga- 
grav 

gravol 
hd 
hdht 
l-45 

hig 
higo 
hil 
hilo 
h i V  
hivo 
hla 
hlatw 

hva 
hvatw 

idr 
lccfl 
matid 
nff 
P 
Pa 
Pan 
Pn 

WPC 
WPCO 
WPP 
regMl 
rhs 

rmvm 
roa 
roan 
rol 
roln 
rom 
rov 
rovn 

w3f 

- 
Center 
Center 
Center 
Edge 

Center 
Edge 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 

Center 
Center 

Center 
Edge 
Center 
Edge 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Edge 
Edge 
Center 

Edge 
Center 
Center 
Center 
Center 
Center 
Center 
Center 

Interphasic area multiplier during condensation. 
Old vapor generation rate per unit volume. 
New vapor generation rate per unit volume. 
Gravitation terms (cosine of the angle between the direction 
of increasing cell index and a vector directed vertically 
upward). 
Cell-averaged inclination cosine. 
Hydraulic diameters. 
Heat-transfer hydraulic diameters. 
Latent heat of vaporization. 
Contribution to phase change from subcooled boiling. 
New HTC between inside wall and noncondensable gas. 
Old HTC between inside wall and noncondensable gas. 
New HTC between inside wall and liquid. 
Old HTC between inside wall and liquid. 
New HTC between inside wall and vapor. 
Old HTC between inside wall and vapor. 
Sum of all products of liquid HTC with heat-transfer area. 
Similar to HLA, except that the product includes wall 
surface temperature. 
Sum of all products of vapor HTC with heat-transfer area. 
Similar to HVA, except that the product includes wall 
surface temperature. 
Heat-transfer regime. 
CCFL flag. 
Structural material identifications. 
Wall friction-correlation options. 
Old total pressure. 
Old noncondensable gas partial pressure. 
New noncondensable gas partial pressure. 
New total pressure. 
QPPP factor applied to the wall heat source. 
New CHF. 
Old CHF. 
Profile of the wall volumetric heat source. 
Flow-regime number. 
Storage for SETS weighting factor xvset (amount of cell- 
centered implict mass or energy flux). 
Mixture density times mixture velocity. 
Old noncondensable gas density. 
New noncondensable gas density. 
Old liquid density. 
New liquid density. 
Mixture density (old time level). 
Old gas density (steam plus noncondensable gas). 
New gas density. 
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rvmf 

sidx 
sig 
sn 
tl 
tln 
trid 
tsat 
tssn 
tv 
tvn 
tw 
twn 
vis1 
visv 
vl 
vlalp 

Vln 
vlt 
vlto 
vlvc 

vlvol 
vm 

vol 
vr 

S 

VIYUI 

VlV 
W 
vvn 
w t  
vvto 
VVVOL 
wa 

wat 

Wfhf 
Wfl 
WfV 

Edge 
Center 
Edge 
Center 
Center 
Center 
Center 
Either 
Center 
Center 
Center 
Center 
Center 
enter 
Center 
Center 
Edge 
Center 

Edge 
Edge 
Edge 
Center 

Center 
Edge 
Edge 
Center 
Edge 
Center 
Edge 
Edge 
Edge 
Edge 
Center 
Center 

Center 

Edge 
Edge 
Edge 

Gas mass flow. 
Old solute mass plated on structure. 
Stratified interfacial area. 
Surface tension. 
New solute mass plated on structure. 
Old liquid temperature. 
New liquid temperature. 
Storage for stabilizer linear system. 
Saturation temperature at the total pressure. 
Saturation temperature for steam pressure. 
Old gas temperature. 
New gas temperature. 
Old wall temperatures. 
New wall temperatures. 
Liquid viscosity. 
Gas mixture viscosity. 
Old liquid velocity. 
Liquid mass flux that enters the cell from the cell edges 
located above the cell. 
New liquid velocity. 
New stabilizer liquid velocity. 
Old stabilizer liquid velocity. 
Liquid velocity at a neighboring cell edge where the 
donor-celled liquid fraction is maximum. 
Cell-centered liquid velocity. 
Old mixture velocity. 
New mixture velocity. 
Cell volume. 
Relative velocity. 
Cell-averaged relative velocity. 
Old gas velocity. 
New gas velocity. 
New stabilizer gas velocity, 
Old stabilizer gas velocity. 
Cell-centered gas velocity. 
Wall area in the current volume for component wall heat 
transfer. 
Total heat-transfer area in the current volume associated with 
heat structures. 
Weighting factor for stratified-flow regime. 
Wall friction factor for liquid. 
Wall friction factor for gas. 

Application Programming Interface Document 
Rev. 0.4 

Page 102 



C.2. Dual-Derived-Type Component Arrays 

The following variables are allocated array pointers in the derived type containing 
information that are must be stored at both new- and old-time levels on each timestep 
for 1D components. Note that this group contains one anomaly. The variable tw 
interacts with the fluid as a surface wall temperature, but is a 2D array containing all 
temperatures associated with any wall conduction calculation. For the jth fluid cell, 
tw(1,j) provides the wall surface temperature for heat transfer to the fluid cell center. 
This convention is different from that used in the heat-structure component, where the 
structure temperature array aligns with the edges of the fluid cells. 

Variable 

alv 

alve 

alp 

ara 

are1 
arev 
arl 
arv 
bit 
chti 

chtia 

cif 
conc 
ea 
el 
ev 

h i V  

P 
Pa 
WPC 
roa 
rol 
rov 
S 
tl 
tv 

Location 
Center 
Center 

Center 

Center 

Center 
Center 
Center 
Center 
Either 
Center 

Center 

Edge 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 

Definition 
Void fraction. 
Product of liquid-side flashing interfacial HTC and interfacial 
area. 
Product of liquid-side evaporation interfacial HTC and 
interfacial area. 
Stabilizer value for "Da. (macroscopic noncondensable gas 
density). 
Stabilizer value for (l-")Diei. 
Old stabilizer value for "Dgeg. 
Old stabilizer value for (l-")Di (macroscopic liquid density). 
Old stabilizer value for "Dg (macroscopic gas density). 
Bit flags from previous timestep. 
Product of vapor-side interfacial HTC and current volume 
interfacial area. 
Product of noncondensable gas interfacial HTC and current 
volume interfacial area. 
Interfacial drag coefficients. 
Solute-mass-to-coolant-mass ratio. 
Noncondensable gas specific internal energy. 
Liquid-specific internal energy. 
Total gas-specific internal energy. 
Vapor generation rate per unit volume. 
HTC between inside wall and noncondensable gas. 
HTC between inside wall and liquid. 
HTC between inside wall and vapor. 
Total pressure. 
Noncondensable gas partial pressure. 
CHF. 
Noncondensable gas density. 
Liquid density. 
Gas density (steam plus noncondensable). 
Solute mass plated on structures. 
Liquid temperature. 
Gas temperature. 
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tw 

vl 
vlt 
vm 

w t  
w 

Center 

Edge Liquid velocity. 
Edge Stabilizer liquid velocity. 
Edge Mixture velocity. ~ 

Edge Gas velocity. 
Edge Stabilizer gas velocity. 

Wall temperatures aligned with the center of the fluid cells 
but with the edge (node) of the radial conduction cells. 

C.3. HydrolD-Derived-Type Component Arrays 

The following variables are allocated array pointers in the derived type containing 
variables that are defined only once (or once in a timestep) for 1D components. They are 
grouped by those associated with the fluid and those associated with the embedded heat 
structure (pipe wall). 

Variable 
alpmn 

alpmx 

alp0 

arc 
cl 

Cpv 

dalva 

am 

Cpl 

cv 

dfldp 
dfvdp 
dhldz 

dr 

Location 
Center 

Center 

Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 

Edge 
Edge 
Edge 

Center 

deldp 

deldt 

devat 

devap 

devdp 

Definition 
Minimum value of void fraction among a cell and all of its 
neighbors. 
Maximum value of void fraction among a cell and all of its 
neighbors. 
Void fraction at the start of the previous step (step n-1). 
Noncondensable gas mass. 
Solute macroscopic density: (l-”)Di c . 
Liquid conductivity. 
Liquid specific heat at constant pressure. 
Gas specific heat at constant pressure. 
Gas conductivity. 
Derivative of alv with respect to void fraction (currently 
always set to zero). 
Derivative of liquid velocity with respect to pressure. 
Derivative of gas velocity with respect to pressure. 
Gravitational head force caused by void gradient. 

Derived-type array for thermodynamic derivatives and 
enthalpies. Type components are: 
Partial derivative of liquid-specific internal energy with 
respect to total pressure (temperature held constant). 
Partial derivative of liquid-specific internal energy with 
respect to temperature (total pressure held constant). 
Partial derivative of noncondensable gas-specific internal 
energy with respect to temperature (total pressure held 
constant). 
Partial derivative of noncondensable gas-specific internal 
energy with respect to pressure (temperature held constant). 
Partial derivative of gas-specific internal energy with respect 
to total pressure (temperature held constant). 
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dx 
elev 
fa 
favol 
finan 

fric 
fsmlt 
grav 

gravol 
hd 
hdht 

hgam 
hla 

hlatw 

hfg 

devdt 

dhlsp 

dhvsp 

drolp 

drolt 

drovp 

drovt 

drvap 

drvat 

dtsdp 

dtssp 

hlst 
hvst 

Center 
Center 
Edge 
Center 
Center 

Edge 
Center 
Edge 

Center 
Edge 
Center 
Center 
Center 
Center 

Center 

Partial derivative of gas-specific internal energy with respect 
to temperature (total pressure held constant). 
Derivative of liquid-specific saturation enthalpy with respect 
to pressure, evaluated at the total pressure. 
Derivative of steam-specific saturation enthalpy with respect 
to pressure, evaluated at the steam partial pressure. 
Partial derivative of liquid density with respect to total 
pressure (temperature held constant). 
Partial derivative of liquid density with respect to 
temperature (total pressure held constant). 
Partial derivative total gas density with respect to pressure 
(temperature held constant). 
Partial derivative of total gas density with respect to 
temperature (total pressure held constant). 
Partial derivative of noncondensable gas density with respect 
to pressure (temperature held constant). 
Partial derivative of noncondensable gas density with respect 
to temperature (pressure held constant). 
Derivative of saturation temperature with respect to 
pressure, evaluated at the total pressure. 
Derivative of saturation temperature with respect to 
pressure, evaluated at the steam partial pressure. 
Liquid-specific enthalpy, evaluated at the total pressure. 
Steam-specific enthalpy, evaluated at the steam partial 
pressure. 

Cell length in flow direction. 
Cell-centered elevations. 
Cell-edge flow area. 
Cell-centered flow area (volume divided by cell length). 
Inverted annular regime weighting factor (currently not 
used). 
Additive friction factors (generally for form losses). 
Interphasic area multiplier during condensation. 
Gravitation terms (cosine of the angle between the direction 
of increasing cell index and a vector directed vertically 
upward). 
Cell-averaged inclination cosine. 
Hydraulic diameters. 
Heat-transfer hydraulic diameters. 
Latent heat of vaporization. 
Contribution to phase change from subcooled boiling. 
Sum of all products of liquid HTC with heat-transfer area 
over all heat-structure components connected to a cell. 
Similar to HLA, except that the product includes wall surface 
temperature. 
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hva 

hvatw 

lccfl 
nff 
r e v  
rhs 

mvm 
rom 
.rvmf 
sidx 
sig 
trid 
tsat 
tssn 
vis1 
visv 
vlalp 

vlvc 

vlvol 
vol 
vr 

vwol 
wfhf 

Wfl 
WfV 

Vflr 

Center 

Center 

Edge 
Edge 
Edge 
Center 

Edge 
Center 
Edge 
Edge 
Center 
Either 
Center 
Center 
Center 
Center 
Center 

Center 

Center 
Center 
Edge 
Center 
Center 
Edge 

Edge 
Edge 

Sum of all products of vapor HTC with heat-transfer area 
over all heat-structure components connected to a cell. 
Similar to HVA, except that the product includes wall surface 
temperature. 
CCFL flag. 
Wall friction-correlation options. 
Flow-regime number. 
Storage for SETS weighting factor xvset (amount of cell- 
centered implict mass or energy flux). 
Mixture density times mixture velocity (mass flux). 
Mixture density. 
Gas mass flow. 
Stratified interfacial area. 
Surface tension. 
Storage for stabilizer linear system. 
Saturation temperature. 
Saturation temperature for steam pressure. 
Liquid viscosity. 
Gas viscosity. 
Liquid mass flux that enters the cell from the cell edges 
located above the cell. 
Liquid velocity at a neighboring cell edge where the donor- 
celled liquid fraction is maxi1,iun. 
Cell-centered liquid velocity. 
Cell volume. 
Relative velocity. 
Cell-averaged relative velocity. 
Cell-centered gas velocity. 
Weighting factor for stratified-flow regime (1.0 is fully 
stratified). 
Wall friction factor for liquid. 
Wall friction factor for gas. 

The following variables are associated with conduction from a heat structure directly 
associated with the component (pipe wall). Variables cpw, cw, matid, drw, rn, and rn2 
are assumed to be constant along the length of the 1D component and are associated 
only with ”nodes-1” conduction cell centers or, in the case of rn2, “nodes” conduction 
cell edges. Variables cppp and row can vary throughout the conduction mesh. They are 
associated with the conduction cell edge and center, respectively, and both align with the 
center of the fluid cells. The remaining variables vary only along the length of the 1D 
component and are alligned with the center of the fluid cells (dimensioned ncells). 
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Variable 

cpw 

matid 
drw 
emis 
hol 
hov 
idr 

9pPP 

cw 

V3f 

rn 

m2 
row 

tchf 
to1 

tov 

wa 

wat 

Location 

Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 
Center 

*. 

Edge 

Center 
Center 

Center 
Center 

Center 

Center 

Center 

Definition 

Specific heat of wall material. 
Wall conductivity. 
Strucixral material identifications. 
Radial mesh size. 
Wall emissivity. 
HTC between outside wall and liquid. 
HTC between outside wall and vapor. 
Heat-transfer regime (integer). 
QPPP factor applied to the wall heat source. 
Profile of the wall volumetric heat source, values for each 
combination of conduction cell edge and fluid cell center. 
Radii at the wall radial conduction cell edges (locations of 
temperatures). 
Radii at wall conduction cell centers. 
Material density at the center of each (ncells*(nodes-1)) wall 
conduction cell. 
CHF temperature, one for each hydro cell. 
Liquid temperature outside wall. Exterior boundary 
condition for each hydro cell. 
Vapor temperature outside wall. Exterior boundary 
condition for each hydro cell. 
Wall area in the current volume for component wall heat 
transfer. 
Total heat-transfer area in the current volume associated with 
heat structures. 

C.Vpecial1D Shared Scalar Data-Module OneDDatM 

REAL Variables 

alpst 

ardmin 

arn 

ary 

cla 

The primary leg fluid void fraction to be convected into the Tee component 
side leg by the Tee offtake model (located at cell number "jcell"). 
Minimum value of the difference between the flow-area ratios one mesh-cell 
distance from a junction interface, with a Plenum component, and at the 
junction interface with a Plenum component for flow from the Plenum 
component. 
No factor for applying flow-area ratios in the momentum-convection term. 

0.0 = apply area ratios, 
1.0 = do not apply area ratios. 

1.0 = apply area ratios, 
0.0 = do not apply area ratios. 

Yes factor for applying flow-area ratios in the momentum-convection term. 

Fraction of liquid velocity at the left face of the Tee primary-leg junction cell 
that contributes to the momentum transfer into the Tee side leg. 
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clav 

c2a 

c2av 

d 

C t P  

dvjP 

fll 

fl2 

fljp 

fljs 

fv l  

fv2 

havlv 
qtp 

so1 

so2 

salt 

savt 

ssac 
sse 
ssmc 
ssmom 

ssve 
ssvc 

vjs 

Vapor velocity fraction at the left face of the Tee primary-leg junction cell that 
contributes to the momentum transfer into the Tee side leg. 
Fraction of liquid velocity at the right face of the Tee primary-leg junction cell 
that contributes to the momentum transfer into the Tee side leg. 
Vapor velocity fraction at the right face of the Tee junction cell that contributes 
to the momentum transfer into the Tee side leg. 
Cosine of the angle between the low numbered segment of the primary leg 
and the secondary leg, unless the cosine is positive, in which case Ct is zero. 
Cosine of the angle between the low numbered segment of the primary leg 
and the secondary leg, unless the cosine is negative, in which case Ct is zero. 
Derivative of the pump (or turbine) momentum source term with respect to 
fluid velocity (assumes homogeneous flow). 
Temporary storage for liquid mass-flow corrections for mass-conservation 
checks at low-numbered cell face (component junction). 
Temporary storage for liquid mass-flow corrections for mass-conservation 
checks at high-numbered cell face (component junction). 
K-factor turning plus abrupt flow-area change loss times the side-leg 
RHO*FA*Vh4**2 at a Tee internal junction that is to be assigned to the 
primary-side interfaces that flow into Jcell. 
FRIC turning plus abrupt flow-area change loss at a Tee internal junction that 
is to be assigned to the side-leg internal-junction interface. 
Temporary storage for vapor mass-flow corrections for mass-conservation 
checks at low-numbered cell face (component junction). 
Temporary storage for vapor mass-flow corrections for mass-conservation 
checks at high-numbered cell face (component junction). 
Temporary storage for the hydraulic diameter when the valve is open. 
Direct energy deposited per unit length in the current 1D section during the 
current timestep. 
Factor (+1 or -1) necessary to make the velocity at the low-numbered cell face 
match the velocity in the component evaluating the momentum equation for 
that component junction. 
Factor (+1 or -1) necessary to make the velocity at the high-numbered cell face 
match the velocity in the component evaluating the momentun-t equation for 
that component junction. 
Source term to liquid for compressible work to the primary cell with a Tee 
junction. 
Source term to vapor for compressible work to the primary cell with a Tee 
junction. 
Air mass source to the primary cell with a Tee junction. 
Total energy (liquid plus gas) source to the primary cell with a Tee junction. 
Total mass source to the primary cell with a Tee junction. 
Momentum source to cell face msc from a pump or turbine component. 
Gas mass source to the primary Cell with a Tee junction. 
Gas energy source to the primary cell with a Tee junction. 
Mean velocity at the Tee-side-leg face joining to the primary (not used). 
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INTEGER Variables 

io1 

io2 

io3 

iacc2 
ibks 

icme 

il 
iphsep 

isflg 
islb 
isrb 

ivpvlv 
jstart 
lpindx 

msc 

nc2 
njn 
nstg 
ntee 

Index to the Network matrix and Network variable array providing the 
Network equation and variable at the junction adjacent to the current 
component’s low-numbered cell. Zero if no network equation exists at that 
junction. 
Index to the Network matrix and Network variable array providing the 
Network equation and variable at the junction adjacent to the current 
component’s high-numbered cell. Zero if no network equation exists at 
that junction. 
Index to the Network matrix and Network variable array providing the 
Network equation and variable at the junction between a Tee primary and 
secondary side. Zero if there is no Tee junction. 
Flag set to non-zero value if Pipe is used to model an accumulator. 
Counter indicating whether the code is in a setup or back-substitution pass 
in the flow equation solutions. See Secs. II.1.4, II.1.5, and II.1.6. 
Index for referencing the portion of the iou array needed for the current 1D 
section. 
1D Network loop number currently being computed. 
Phase-separation evaluation flag of the Tee offtake model, triggers special 
value for alpst. 

Velocity calculation flag for component left (low-numbered face) junction. 
Velocity calculation flag for component right (high-numbered face) 
junction. 
Interface number of the adjustable-valve flow area. Zero if no valve. 
Array index for the cell at the left end of 1D segment. 
Index to the start point for the current network loop in contiguous constant 
arrays as dvb, drl, dry, dra, drel, and drev. 
Cell number for Tee primary leg connection source terms, or face number 
for a pump of turbine momentum source. 
Array index for cell beginning a Tee side leg. 
Number of network junction in the current loop. 
Counter for the number of steam separators. 
Counter to locate Tee-side-leg information in the iou array. 

Steam Generator flag (not used). I 
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APPENDIX D 

PROPOSED FUTURE IMPROVEMENTS TO INFORMATION PASSING 

Two tasks are scheduled that 14dl improve the data interfaces within the code 
sigruficantly. They also lay the groundwork for communication in a parallel execution of 
the main computational engine of the consolidated code. The first task will fully 
separate the evaluation of terms in the flow equations from the solution of the resulting 
system of linear equations. Once completed, this will provide a well-defined location for 
equation terms and eliminate the need for generation of this data for 1D components 
before evaluation of the equations in 3D components. The second task deals directly 
with the prcblem of intercomponent data communication, requiring only one request at 
initialization to establish automatic information passing between components. This is 
being implemented as a system service, with sufficient generality to permit later use by 
higher-order and more implicit difference methods. 

Details of the solution modularization and resulting data interfaces are presented in 
Sec. D.1. The proposed intercomponent communication procedure is outlined in 
Sec. D.2. 

D.l. Modularization of the Linear Equation Solutions 

One major driving force behind this task is a need for flexibility within the code structure 
for replacement of numerical methods during the development cycle. At this stage, we 
have only a limited idea of the difference and solution methods that will be applied 5 or 
10 years from now. The method of equation solution is not totally independent of the set 
of equations to be solved. However, for a given set of difference equations, many 
solution procedures will exist, and one best solution method may not exist for all 
problem nodalizations. Separation of the equation solution permits quick adoption of 
one or more solution methods. Even in instances where a new difference method drives 
a need for a new family of solution methods, this separation makes the division of labor 
and the isolation of testing easier. 

The structure of arrays chosen for coefficients is to some extent governed by the 
structure of the equations to be solved. It is not the goal of this project to create a data 
interface general enough to handle all possible sets of equations. It is the goal to create 
an interface that is clean and restricted enough in the scope of the application that its 
replacement will be relatively simple if a major change is required in difference 
equations and solution methods. 

D.l.l. Theory of the Solution Procedure 

To keep the emphasis on the methods used, an initial discussion is built around a simple 
1D single-phase flow model; a specific example of flow in a closed loop is illustrated in 
Fig. D-1. Cells and cell faces in Fig. D-1 have been given absolute numbers to facilitate 
discussion of full-system equation coupling. In terms of component numbering, cells 1- 
4 in this figure can be considered cells 1 4  of Pipe 1, and cells 5-8 in the figure could be 
cells 1 4  of Pipe 2. 
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1 5 

7 

Fig. D-1. Two pipe-flow loop. 

The nature of the underlying numerical method (SETS) and form of the solution 
procedure are not tightly linked to the details of the equations used in TRAC. These 
details are available in the TRAC-PFl/MODZ Theory Manual and will not be repeated 
here. The simple set of equations representing 1D flow in constant area pipes is 

* + d ( p V )  = 0 
at ax 

*+-(peV) a = -p.  av ax 
at ax 

and 
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Here, K is a wall friction coefficient that may be a function of velocity and fluid 
properties. 

A staggered spatial mesh is used for the difference equations, with thermodynamic 
properties evaluated at the cell centers and the velocity evaluated at the cell edges. Here, 
uniform cell lengths and constant area are assumed. When values of thermodynamic 
properties are required at cell edges, they are obtained from a donor cell formula: 

where 

and 

Here, Y may be any state variable. With this definition of averaging, spatial differences of 
flux terms become 

A X  

For our purposes, the numerical approximation to the momentum flux term V VV is 
taken to be 
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The actual momentum transport term in TRAC-M is more complex, involving area 
scaling, but results in the same form of linear equations that will be seen here. 

I 
'1,l '1,2 O o o o O a , , s j ( y  
a2.1 '2,2 '2.3 o o o o o v .  

'3,2 '3,3 '3,4 o o o o v 3  
0 0 a 4 . 3  '45 '4.6 O O O V ,  

'5,4 ' 5 . 5  '5.6 0 0 
'6 .5  '6.6 '6,7 

'7.6 '7.7 a7,8 

D.1.1.1. Stabilizer Motion Equations 
The SETS equations implemented in TRAC-M begin each timestep with a solution of a 
stabilizer motion equation, with the following general form: 

vs 
'6 

'7 

This equation is purely linear in the urknown stabilizer velocities. When the tilde and 
superscript are dropped for simplicity,, the general form for this linear system for the 
flow loop in Fig. D-1 is 

One standard trick in linear algebra to solve this problem is to break it into blocks that 
can be solved more easily. One obvious approach would be to isolate the last row and 
column of the matrix: 
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- 

0 0 0 0 0 I a1,8 
I 

‘1.1 a 1 . 2  

a2,1 a2,2 a2,3 0 0 0 0 1 0  
0 0 o l o  a3,2 ‘3,3 ‘3.4 I 

a4,3 ‘4.5 a4,6 0 o l o  
a5,4 a5,.5 ‘5.6 o i o  I 

a6,5 ‘6,6 ‘67 I I 
‘7.6 ‘7,7 ‘7.8 -----------------------------~---. 

‘8.1 ‘8.7 ‘8,8 

This then can be written more clearly as the following problem: 

3 1 , l  % , 2  0 0 0 0 0  
32, 1 a2 ,2  a2 ,3  0 0 0 0  

0 0 a4,3 a 4 , 4 a 4 , 5  0 0 
a5,4 aS,5 aS,6 0 

a3,2 a3,3 a3,4 

a6,5 a6,6 a6, 

0 0 0 0 0 a7,6 a7 

. .  
bl 

b2 
b3 

b4 

b5 

b? 
b6 

a1, I 

0 

0 

0 
0 
0 

a7, I 

03-91 

. V 8  

(D-10) 

(D-11) 

Equation (D-10) is solved to obtain velocities VI through V, as linear functions of V,. 
The existence of two constant vectors on the right-hand side of the equation means that 
two solutions of a 7 x 7 system are required. However, using a lower-upper (LU) 
decomposition method makes the cost of the second solution insignificant compared to 
the cost of the first. Once these solutions are available, the specific linear expressions for 
VI and V, as functions of V8 are substituted into Eq. (D-ll), and a value of Vs is obtained. 
Back substitution of this value into the equations for the other velocities completes the 
solution. 
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In Fig. D-1, there is nothing unusual about VB from the standpoint of the chosen 
component structure. Although a final implementation of the solution procedure may 
function as described above, the initial implementation must follow the current network 
solution procedure. In that case, the velocities at the component junctions (VI and V,) 
take on special signrficance as network variables. The full linear system is partitioned to 
isolate the junction variables and junction equations: 

I o o o I o I o 
o i o o o i o i a7,6 

a8,1 I I I a798 J 1 

(D-12) 

Actual solution of the linear system follows a process similar to the initial example. The 
well-structured blocks are isolated as 

a6, 6 a6, 7 

a'?,, a7,7 E] = [I 4- 

a8,7 a8,8 

a6, 5 
. O  ~ " 5  - 
0 

and 
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The cell edge ata  junction between two components is shared by both components, and 
a decision must be made as to which of these two components takes responsibility for 
evaluating the terms in the momentum equation at this edge. The current procedure is 
to give that responsibility to the one appearing first in the order of component 
processing. In a later parallel version of the code, the responsibility generally will be 
assigned to the first of the components processed during problem initialization. 

Equations (D-13) and (D-14) are solved for interior velocities as linear functions of the 
junction velocities: 

Red1 

[ 3 = E] + 

and 

ction D f  the blocked network solution meth d is completed by substib 
results in Eqs. (D-16) and (D-17) into Eq. (D-15), yielding 

( 5 , l  + a1,2 al,1 + a13 a 2  v + @l,2 4 , s  + a1,8 ai,,) v5 
= bl - a1,2 bi - bi 

and 

(a5,4 a' 4,1 + a  ,,6 a' 6,1 )I( + (a,,, + ai, 

bi - a5,6 bi = b, - 
+ a5,6 ' 5  

(D-16) 

ting the 

(D-18) 

(D-19) 

This is a closed system that can be solved for VI and Vg. Back substitution of these 
values into Eqs. (D-16) and (D-17) completes the solution of the system. 

D.1.1.2. Basic Equations 
After the stabilizer motion equations are solved, the version of SETS implemented in 
TRAC-M proceeds to solve the "basic" equations for motion, mass, and energy. Apart 
from the use of stabilizer velocities in the momentum transport term of the motion 
equation, these equations are equivalent to the standard semi-implicit method used in 
older versions of TRAC-M. A tilde over a quantity indicates that it is an interim result to 
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be replaced with a final nontilde value before completion of the timestep: 

(D-20) 

(pi n + 1 ej -n + 1 - p F r )  

At 
+ 

AX 

n + l  n 
-n+ 1Vj + I / Z -  (pe)j = o  +Pj A X  

The solution begins by solving the motion equation directly to obtain the new time 
velocity at each cell edge as a linear function of the pressure difference across that edge. 
This is substituted into the mass and energy equations to eliminate the new-time velocity 
as an unknown in those equations. For each cell, these two remaining flow equations, 
combined with the necessary state relationships [p(p,T) and e(p,T)], give two nonlinear 
equations with new-time pressure and temperature as the two independent variables. 
These equations are linearized (part of a standard Newton iteration) with the 
substitutions: 

- n + l , i  

- n + l , i + l  - n + l , i  

G + l* + = Tj +6Tj 

P j = pj +6Pj  
(D-23) 

The second superscript in these equations is the iteration count. An auxiliary variable is 
defined as 
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- 
The iteration proceeds by making substitutions of the following form into the difference 
equations: 

(D-24b) 

The ith iterate values are all known, and the variations (lip’s and 6T’s) are assumed to be 
small enough that nonlinear combinations of them (6p, ST, Sp2, ST2, etc.) can be ignored. 
This results in a set of linear equations for each cell in the form: 

(D-25) 

The first row in the above linear system can be considered to be the linearized mass 
conservation equation and the second to be the linearized energy equation. This system 
is solved for the cell pressure and temperature variations in the form: 

(D-26) 

At this point, the b’ constants represent the linearized predictions of change in pressure 
and temperature assuming no further velocity changes at the cell faces. The c’ 
coefficients account for contributions caused by velocity changes (driven by changes in 
the pressure gradient). 

Completing the solution of the basic equations requires two steps within the current 
version of TRAC. Within each component, the pressure equations are isolated, and Ap 
terms on interior faces are eliminated by substitution of the defining Eq. (D-25). For our 
sample problem, this gives a tridiagonal linear system for each pipe: 

, , ‘ + Cr1,1 -‘ri, 1 0 0 

-c12,1 1 + c12,1+ %2,1 -Cr2,1 0 
I I I , 

, , , I 

0 -‘13,1 ‘13, 1 + ‘r3, 1 -‘r3, 1 

0 0 -‘14,1 t ‘14,l 
, , 

I 

‘11, l  

0 

0 

0 

AP, + 

0 
0 

0 

# 

‘r4, 

4% 

and 
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, , 
1 + cr5,1 -‘r5,1 0 0 

-‘16,1 ’ ‘16,l ‘r6,l -‘r6, 1 0 
, , I , 

/ , / / 

0 -‘17,1 + ‘17, 1 -k ‘r7,I %7,1 

0 0 -‘18,1 ’ ‘18, 
# # 

0 
0 

0 

, 
‘r8,l 

- 

. .  

b5, 1 

b7, 1 

, 
’6, 1 

I APB, 

Here, as before, the absolute cell index number is used from Fig. D-1, rather than the 
component cell index number. The subscripts on the Ap terms refer to absolute face 
indices shown in the figure. These equations currently are solved within TflDs to obtain 
the pressure variations. This function will be moved to a subroutine ”triSolve”, called 
from ”blockSolver”. Results of this solution are 

and 

(D-30) 

Results of these solutions finally are combined via the definition of the network junction 
variables. For this example, the defining equations for the junction variables are 

Substituting in the 6p’s from Eqs. (D-30) and (D-31) gives 
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,, ,, ,, ,, I R 

and 

These can be rearranged to the final form of the network equations: 

,, ,, ,, ,, I I 

(’ + ‘11,l + ‘r8, 1IAP1 - (‘rl, 1 ‘18, 1lAp5 = bl, 1 - b8, 1 

and 

(D-32) 

(D-33) 

(D-34) 

(D-35) 

These form a closed system in the network variables; this system is solved directly. Back 
substitution follows into Eqs. (D-29) and (D-30), giving pressures that can be back 
substituted into Eq. (D-26) to provide the iteration change in the new-time temperatures. 

D.1.1.3. Stabilizer Mass and Energy Equations 
The final step in the SETS method is the solution of the stabilizer mass and energy 
equations. At this point, the new-time velocities have been determined and can be 
treated as constants in the solution of the equations. The equations vary from the basic 
mass and energy equations only in that the densities and energies in flux terms are now 
evaluated at the new time: 

(D-36) 

At 

n + l  
= 0; 

-n+l V n + l  j+1/2- Vj-112 

+ Pj At 

(D-37) 
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These mass and energy equations can be seen to be basically linear in p"+' and (pe)"", 
respectively, with a structure that is basically tridiagonal. For the loop flow problem, the 
general form of the mass equation can be written as 

Lines have been drawn to indicate the current TRAC 

(D-38) 

choice of network junction 
variables. For a given component junction, the associated network variable is-the one 
adjacent to that junction in the first of the two adjacent components processed. The 
energy equation takes on a similar form, with the interesting property of using exactly 
the same matrix on the left side of the equation. TRAC takes advantage of this dual use 
of the coefficient matrix, using LU decomposition to reduce the solution time of the 
systems. 

The above equation structure should be recognized as being the same as the one 
resulting from the stabilizer motion equations. The solution proceeds as described in 
Sec. D.l.l.l, with a few minor variations. 

D.1.1.4. Considerations for 3D Solutions 
When Vessels are present in current versions of TRAC, the above procedure is followed, 
with one key exception in each set of equations. When any Vessel variable (velociq, 6p, 
p, or pe) occurs in an equation, it is moved to the right-hand side with its coefficient, and 
all 1D variables are solved as functions of the unknown Vessel variables. These results 
are substituted as needed into the difference equations for the Vessel to give a closed set 
of equations that can be solved for all Vessel variables. Values for Vessel variables are 
back substituted into the 1D equations, and final values for all 1D unknowns are 
obtained. 

Specific examples of this process are provided here for the system illustrated in Fig. D-2. 
As in Fig. D-1, cells are given "absolute" numbers rather than a combination of 
component numbers and cell numbers. For this example, cells numbered 1 through 5 are 
in a Pipe and cells 6 through 9 are in a 3D (collapsed to 2D here) Vessel. 
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D-2. Flow loop with 2D Vessel. 

The full system of stabilizer momentum equations for the flow loop in Fig. 2 is 
represented by Eq. (D-39). The last block in the coefficient matrix is associated with the 
radial velocities V9 and V10 and is completely isolated from equations for the axial 
velocities in the same 3D region. This reflects the fundamental structure of the 3D 
stabilizer momentum equations. For example, the axial stabilizer momentum equations 
evaluate contributions from axial velocities only implicitly. Radial and azimuthal 
velocities appearing in momentum transport terms are evaluated explicitly. This results 
in no coupling coefficients between velocity variables in the axial momentum block and 
those in the radial (or azimuthal) blocks. 

Solution of the 1D portion of this system proceeds as before, isolating the 1D block as 

(D-39) 
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and 

This is solved to obtain the equation: 

+ 

I 

a2, 1 

a3, 1 

a4, 1 

' 5 ,  1 , 

, 

, 

, 

VI + 

I 

a2, 6 

a3, 6 

'4, 6 

6 

, 

, 

I 

(D-40) 

'6 (D-41) 

and these results are substituted into the junction equations to obtain: 
, I , 

('1, 1 + '1, 2a2, 11'1 '1, 2'2,6'6 = b l  - '1, 2b2 - al ,  8'8 

and 

, I , 
a6, 5'5, l v l  -t ('6, 6 4- '6, 5'5,6)'6 = b6 - '6, gb5 - '6, 7v7 03-43] 

Equations (D-42) and (D-43) give junction velocities as a linear combination of the "3D" 
velocities as 

+ all 7 
, 

a6, 7 
v 7  + 

These two expressions are substituted into the 3D axial flow equations to obtain a final 
closed set of equations for the 3D axial velocities (V7 and VS). Once the 3D velocities are 
known, the 1D network junction velocities follow by back substitution, and the internal 
component velocities are obtained in a final stage of the back substitution. 

A similar pattern follows for solution of the basic and stabilizer mass and energy 
equations. For the basic equations, the network junction variable equations analogous to 
Eqs. (D-34) and (D-35) are 
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(D-45) 

and 

(D-46) 

These equations are solved for the network junction variables as functions of the 3D 
pressure variations: 

(D-47) 

and 

(D-48) 

The semi-implicit nature of these basic equations means that the linkage between 3D 
blocks and 1D blocks occurs only through junction variables such as Ap1 and Ap5. This is 
a result of the fact that the only new-time terms shared by adjacent cells are the 
velocities, which in turn depend only on the junction variables (Ap's). As a result, 
substitution of Eqs. (D-47) and (D-48) into the 3D equation block produces a closed set of 
equations that may be solved for final values of all 3D unknowns. Back substitution of 
3D pressure variations into Eqs. (D-47) and (D-48) provides final values for network 
junction variables, which in turn are substituted into the analog of Eq. (D-41) to yield 
final values of 1D variables. 

D.1.2. Software Implementation 

New subroutines will be created to perform the full solution of the linear systems 
generated by the approximations to the flow equations. These will replace statements in 

Femom, Fernom, Femomy, Femomz, TflDs, and Stbme, which begin the solution 
of the 1D portion of the linear equations, including all local coding for solution of 
the local tridiagonal matrix structures and generation of terms in the network 
matrices; 

Tf 1Ds and Tf3Ds for cell block reduction; 

Out3D, Post3D, Prep3D, and Vssl2 for Vessel matrix solution; 

Outer, Post, and PreplD for solutiori of the network matrix; and 

Bksmom, TflDs3, Tf3Ds3, Bksstb, and Bksstb3, which are directly related to back 
substitution steps in the solution of the linear equations. 
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The basic and stabilizer equations involve very different numbers of equations and 
generate two different matrix strudures. As a result, two separate subroutines will be 
created for solution of global system of linear equations. The more basic of these, Solver, 
operates on the stabilizer equations and is described in the following section. The more 
complex linear system resulting from the Newton iterative solution of die basr: 
equations is solved by “blocksolver”, which is described in Sec. D.1.3.2. Descriptions 
provided in these sections are for planning purposes only. Later studies on timing and 
memory usage or special needs for parallel processing may change the details of the final 
implementation. 

D.1.2.1. Subroutine Solver 
The interface to this subroutine is relatively simple. It uses the module Matrices and so 
has full access to this data structure. Only two arguments are passed: 

1. an abbreviated name for the array of independent variables, and 

2. an optional argument set to ’factored’ when the coefficient matrix has already 
been factored by a previous call to Solver. 

One example of using this subroutine is the solution of the stabilizer mass and energy 
equations driven be subroutine Post. The following code would be inserted just before 
the end of the DO loop on ”ibks”: 

IF (ibks.NE.l) CYCLE 
CALL SOLVER(’arl’) 
CALL SOLVER(’arel’,’factored’) 
IF (iso1ut.ne.B) CALL SOLVER(’arc’,’factored’) 
CALL SOLVER(’arv’) 
CALL SOLVER(’arev’,’factored’) 
CALL SOLVER(’ara’,’factored’) 

ENDIF 

This choice was made to permit a single point within Solver for association of auxiliary 
arrays needed by solution methods and to permit transferring of knowledge of the data 
structure to a lower level for parallel methods based on distributed memory machines. 

Selection of arrays to be used in the actual solution will be via pointer association. As i~r. 
example, the initial implementation will contain allocatable arrays in Matrices such as 

TYPE (sparseMatrix), ALLOCATABLE, TARGET :: al(:), ag(:) 
REAL, POINTER) DIMENSION (:) :: arlS, arvS, & 
& arels arevs, aras, arcs, wts, vlts, arlRHS, & 
& arvRHS, arelRHS arevRHS, araRHS, arcRHS, & 
& WtRHS, VltRHS 
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INTEGER, POINTER, DIMENSION (:) :: splitRowsC, splitRowsE 
INTEGER, POINTER, DIMENSION (:) :: splitRows 

REAL, POINTER, DIMENSIGN (:) :: rhs(:), ans(:) 
TYPE (sparseMatrix), POINTER :: at(:) 

Operations within Solver will be on generic arrays such as "at", "rhs", and "am", which 
will be associated at the beginning of the subroutine based on the contents of the first 
dummy argument "varname". For example, 

SELECT CASE (varname) 
CASE ('arl') 
at => a1 
rhs => arlRHS 
ans => arlS 
splitRows => splitRowsC 
CASE ('wt') 
at => ag 
rhs => wtRHS 
am => wtS 
splitRows => splitRowsE 

... 
E N D  SELECT 

Following this initial decision on array usage, the solution procedure proceeds with the 
steps outlined in Sec. D.l.l.l. The array splitRows is used to divide the 1D problem into 
a set of tridiagonal blocks [see Eq. (D-E!)]. These block systems are solved and coefficient 
arrays stored for later back substitution. A substitution of these results is made into the 
splitting rows to generate the "network" equation system, which is solved with calls to 
Sgefat and Sgeslt. If 3D components are present, solution of the network equations 
involves the generation of coefficient arrays multiplying undetermined 3D variables. In 
this case, a section of code is used to substitute these network results into the 3D 
equations, and the 3D equations are solved for final values of 3D variables. The initial 
implementation of Solver will use the existing TRAC Capacitance Matrix coding and 
data structure to handle the storage and solution of the 3D portion of the problem. 

All three major equation solution stages just outlined use LU factorization and store 
sufficient information so that the factorization need not be repeated. When the 
subroutine is called with the optional dummy argument "factored" present, processing 
jumps immediately to the back-substitution step of the 3D solution, then proceeds 
through back substitution of the network equations and of the initial tridiagonal systems 
to obtain the'final values for the variables (stored in "ans"). 
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The initial implementation of this subroutine will contain equations in exactly the same 
form as those in current versions of TRAC-M. Implementation of the solution steps 
above will be programmed to match the reduction and back-substitution coding 
currently scattered through TRAC as closely as possible to produce minimal 
perturbation on test problem results. However, because the data structure is somewhat 
different and the grouping of solution statements has changed, compilers will react to 
this new implementation differently when producing machine code and results cannot 
be expected always to match previous solutions to the last bit. The variation of any test 
results should not be any greater than those produced by using a different compiler or a 
different optimization level on the same compiler. 

Although the solution procedure is formally the same as current code versions, 
separating the solution steps produces immediate opportunities for more parallel 
execution. In current versions, the contents of subroutines such as Femomx, Tf3Ds, and 
STBME3 had to be executed after all similar 1D subroutines. After this modification, 
these subroutines with their reduced scope of activity could be executed in parallel with 
1D subroutines. A second version of Solver will provide the opportunity for additional 
parallel computation within the solution process. The order of equation reduction will 
be altered so that operations on the sparse blocks associated with 3D components can be 
performed at the same time as those for the tridiagonal blocks associated with 1D 
components. Only the solution of the network matrix will remain as a serial step. The 
greatly reduced amount of information required by the network matrix will make 
solving the preceding steps very amenable to a distributed memory environment. 

D.1.2.2. Subroutine BlockSolver 
Subroutine "blockSolver" communicates entirely through the module Matrices. It has no 
argument list and thus, none of the special pointer assignments that begin Solver (see 
previous section). 

Solution begins with a block reduction in a loop over all elements of the derived-type 
array "blocks" (type blockMatrix). This covers the cell block reduction of the linearized 
basic equations for all cells in the system (1D and 3D). A special derived-type array is set 
by the subroutine Sparcity to define the splitting of the reduced array inro tridiagonal 
blocks. Array "triBlock" is allocated by the statement 

ALLOCATE [triBlock(2,nTriBlocks)] , 

where "nTriBlocks" is the number of "network components" (total number of system 
components plus the number of Tee's and any other Tee-like components). This array is 
of derived-type netIndices defined as follows: 

nethdices - a derived type providing information about indices needed to 
(1) locate tridiagonal submatrices within system-wide coefficient 
and constant arrays, and (2) couple them to the appropriate 
network matrix. 

- index in the system-wide array that starts the submatrix. ilow 
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ihigh 
netNum 

netLow - 

netHigh 

netTee 

index in the system-wide array that ends the submatrix. 
index of the network matrix (or loop index) associated with this 
submatrix. 
index in the network matrix associated with the network variable 
directly coupled to the low end of this tridiagonal submatrix. 
index in the network matrix associated with the network 
equation and variable directly coupled to the high end of this 
tridiagonal submatrix. 
index in the network matrix associated with the network 
equation and variable directly coupled to a Tee junction within 
this tridiagonal submatrix (this will disappear in later versions of 
the Solver, provided now for consistency with the existing 
Solver). 

The blocks of 1D tridiagonal pressure equations are solved as outlined in Eqs. (D-26) 
through (D-36). Substitution into the network junction in Eq. (D-32) is governed by two 
other index arrays created by Sparcity. The derived-type array "junvars" contains 
information on the ith network junction and is allocated by the statement: 

ALLOCATE [junVars(nsplitsE)] I 

where "nsplitsE" contains the number of network junctions in 'he system. Its 
"netVarInd" me is defined as 

J I  

netVarTnd - a derived type providing indices to elements attached to the 
"positive" and "negative" sides of a network junction. 
Components are 
pos - index of an array element to the positive side the network 

junction and 
neg - index of an array element to the negative side of the 

network junction. 

One more array with type netVarInd is needed to provide the indices of adjacent ele- 
ments in the component "cDpp" of "blocks" containing pressure coefficient information. 
This array "junCoef" is allocated by the statement 

ALLOCATE [junCoef(nsplitsE)] . 
These indices are used at each junction to obtain the information needed for 
substitutions that move from equations such as those represented in Eq. (D-31) to the 
network system analogous to Eqs. (D-34) and (D-35). These network equations are 
solved to give the network variables as linear functions of the pressures in any 3D cells 
adjacent to the network junctions, using calls to Sgefat and Sgeslt. A block of code 
follows to substitute network variable information into the 3D pressure equations and 
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transfer 3D pressure coefficients from the blockMatrix data structure to the structure 
associated with the 3D Capacitance Matrix solution method. The job of solving the 3D 
equations is passed to a revised version of the existing TRAC-M subroutine Matsol. 

Results of the 3D solution are back substituted to provide final values for the network 
variables (Ap’s). These are back substituted into the reduced tridiagonal systems to 
provide pressures in all 1D cells. Finally, pressures are back substituted into the reduced 
cell block equations, using components %p” and “cDpp” of “blocks”, to obtain final 
values of all independent variables. 

As with Solver, the above series of steps is designed to match the current solution stages 
carefully in TRAC-M. The same comments on the matching of test results apply. 

It is useful to compare the pressure equations occurring in this subroutine, immediately 
after cell block reduction with the equations produced by the stabilizer mass and energy 
equations. They have the same basic structure. As a result, a second version of 
“blockSolver” will be created that contains the initial cell block reduction for the entire 
system and passes the work of solving the pressure equations to Solver. This will reduce 
the maintenance points in the program and concentrate the most complex programming 
problems associated with parallel implementations into one location (Solver). 

D.1.2.3. Implementation of Velocity Solution 
Within the current code, the ord:r of the velocity variable array #is assigned effectively by 
the subroutine Srtlp (called by Input). The partition lines shown in the previous equation 
are established by Setnet during initialization. The revised code would continue to use 
Srtlp to establish basic array order. However, more information will need to be stored. 
Data are needed within each component for the subscript in Eq. (D-12), corresponding to 
the stabilizer velocity at each cell face. Component subroutines will place these subscript 
(index) values in the array “edgehdex”, within the component data structure (module 
GenlDArray for 1D components, PlenArray for the Plenum, and the equivalent in the 
Vessel). Subscript values will be stored at the same point in the program for cell-centered 
variables used in mass and energy equations described below. These will reside in an 
array named ”centerIndex”. In the revised code, partition lines will be produced by 
Sparsity and by indices of the rows dividing blocks placed into a dynamically allocated 
pointer array named ”splitRowsE” (”E” for edge) contained in the module “Matrices”. 
A similar array named ”splitRowsC ”will be created to mark matrices related to cell- 
centered variables. 

The subroutine Sparsity also will have the job of storing indices for the off-band coeffi- 
cients in the above matrix and for related matrices. These will be stored in arrays with 
the type ”sparseMatrix”, defined as follows: 

TYPE sparseMatrix 
REAL :: a(bandWidth) 
INTEGER, POINTER, DIMENSION(:) :: index 
INTEGER :: nOffI3and 
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REAL, POINTER, DIMENSION(:) :: aob 
END TYPE sparseMatrix 

ln this derived-type "bandWidth" is a parameter residing in module Matrices. The array 
"a" contains coefficients along the primary band of the matrix, and the array "aob" con- 
tains the "off-band" coefficients. The array "index" contains the column index for the 
corresponding coefficient in "aob". The number of off-band coefficients is stored in the 
integer "nOffBand". For the current difference equations, two allocatable "sparseMatrix" 
arrays will be placed in module Matrices, "al" for liquid and "ag" for gas. If necessary 
for future difference methods, this derived type can be cloned to produce types with 
more thar one bandwidth or altered so that component "a" is an allocatable pointer. The 
choice of fixed-dimension "bandwidth" was made based on the fixed structure associ- 
ated with a given difference method and timing results on the use of allocatable pointers 
within derived types (see the Data Structure Software Design and Implementation docu- 
ment). 

Femom contains the LU decomposition loops to produce the results in Eqs. (D-16) and 
(D-17). It stores the "b' " vector coefficients in the variables "vlt" or "wt" (as appropri- 
ate) and the "a' " coefficients in the array "trid" for later back substitution in Bksmom. 

After revisions for modular solution, Femom will only create and store the coefficients 
for each element in the appropriate "sparseMatrix" derived type array, and Bksmom will 
transfer solution values only from system-wide arrays ("vltS" and "wts") in module 
Matrices back into the component data structure. The job of solving the full set of linear 
equations is passed to the subroutine Solver, which is called from subroutine Prep at the 
end of the first pass through the loop on "ibks". 

In the current version of TRAC-M, the coefficients of Vl and V, in Eqs. (D-18) and (D-19) 
are built with statements in Femom assigning elements in the "aol" or "aov" arrays. 
Because Femom is called from components, the entirety of one coefficient cannot be eval- 
uated in a single call. When the first Pipe is processed in our example, contributions for 
which a1,8 and a5 6 are factors cannot be completed because information on the motion 
equations at cell faces 6 and 8 are not available. As a result, a1,8 and a5 6 are stored in the 
network coefficient array "od", and the job of completing the values in "aol" or "aov" is 
completed when Femom is called by the other Pipe. 

After the separation-of-solution procedure, the final solution step is much less compli- 
cated. Subroutine Solver has access to all necessary inforrnation to generate each coeffi- 
cient in Eqs. (D-18) and (D-19) in a single step. Solution of these coupled equations will 
be accomplished initially with the same Linpack-based subroutines (Sgefat and Sgeslt) 
used in TRAC-M for this system. 

D.1.2.4. Implementation of the Solution of the Basic Equations 
The current version of TRAC generates the coefficients ajIi,k, bi& cljIi, and crili in Eq. (D-26) 
within subroutine TflDs, storing them temporarily in the arrays "a" and "c". These 

Application Programming Interface Document 
Rev. 0.4 

Page 131 



- 
arrays are overwritten by each cell, and the subroutine saves only the primed coefficients 
resulting from the solution of each cell's block system. Arrays -for thermodynamic 
variables and derivatives, not needed until the next iteration, are used to store these 
coefficients. 

Separation of the solution procedure from TflDs will utilize an array with type "block- 
Matrix" in the module "Matrices" for the communication coefficient information to the 
subroutine "blocksolver". 

TYPE blockMatrix 
REAL :: a(ncvars,ncvars), b(ncvars), bp(ncvars) 
INTEGER, POINTER, DIMENSION(:) :: index 
REAL, POINTER, DIMENSION(ncvars,:) :: cDp, cDpp 
END TYPE blockMatrix 

The number of independent variables per cell is an integer parameter "ncvars" 
contained in "Matrices". Arrays "a" and "b" match the usage above, and "bp" is the 
primed "b" array. The array "cDp" contains the coefficients of the TIp terms associated 
with the cell, and "cDpp" contains the primed coefficients obtained after solution of the 
cell's block system. 

The pressure Equations [(D-27) and l@-28)] in tridiagnal form currently are solved 
within TflDs to obtain the pressure variations. This function will be moved to a 
subroutine "triSolve", called from "blockSolver". 

The equations for the network variables [Eqs. (D-34) and (D-35)] currently are built 
within TflDs. As with the stabilizer motion equations, terms for each of these equations 
must be contributed from calls to TflDs by both components adjacent to the junction. 
Solution of the equations is performed within the subroutine Outer, through calls to 
Sgefat and Sgeslt. Construction and solution of these equations will be moved to 
"blockSolver" . 
D.1.2.5. Implementation of the Stabilizer Mass and Energy Equation Solution 
The structure of the stabilizer mass and energy equations should be recognized as being 
the same as the one resulting from the stabilizer motion equations. Operations associated 
with Femom now are associated with Stbme, and those associated with Bkmom are done 
in Bksstb for the mass and energy equations. This similarity will be recognized in the 
modularized solution by using the same data structure and solution package for all 
stabilizer equations. 

D.1.2.6. Implementation of the 3D Solution 
Solution for 1D variables as a function of unknown 3D variables is driven by PreplD for 
the stabilizer velocity solution, by Outer for the pressure solution of the basic equations, 
and by Post for the stabilizer mass and energy equations. Solution of the Vessel 
equations is done in Prep3D for stabilizer velocity equations, by Vssl2 (or Out3D for 
multiple Vessels) for the pressure equations, and by Post3D for the stabilizer mass and 
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energy equations. Back substitution of Vessel information into the ID equations is driven 
by PreplD for the stabilizer velocity solution, by Outer for the pressure equations, and 
by Post3D for the stabilizer mass and energy equations. In the modularized solution, the 
3D equations will be just blocks in the full system matrix and will be treated within 
Solver or "blockSolver" as appropriate. In the first implementation, reduction to and 
back substitution from the 3D blocks in Solver and "blockSolver" will be identical to the 
form used in the original program. Once this is tested, a modified version will be created 
in which reduction of the 3D block of equations is not dependent on completion of the 
1D equation reduction. 

D.1.3. Test Plan for Linear System Solution 

Testing of the solution modifications will proceed in three phases. The subroutines 
Solver and "blocksolver" initially will be debugged in isolation from TRAC-M. A small 
driver will be written to create matrices in a number of configurations, within the data 
structure of module Matrices. The test problems will result from selection of an answer 
and multiplication of the matrix by the answer to generate a right-hand side for use in 
the solution subroutine. Results of the solution procedure will be printed adjacent to the 
initially selected answer, along with a measure of error. 

Initial installation of the Solvers in TRAC-M will be tested with some very simple test 
problems. The first of these will be similar to the loop in Fig. D-1, but using a p m p  
component to replace one of the pipes as a momen%m source. The second will create a 
loop from the primary legs of three tees, with injection from fills on two side legs and 
outflow through the remaining side leg. Variations of this will be created to check proper 
treatment of Tee momentum source terms when side legs join at the first, last, or only cell 
of the primary leg. A third series will add a simple Vessel to the pump loop. All of these 
simple tests will have versions that are single-phase gas, single-phase liquid, and bubbly 
two-phase flow. In principle, the single-phase tests exercise all of the code, but the two- 
phase tests are needed to check for bugs that introduce false communication between the 
equations for each phase. All tests should produce identically printed results in codes 
with and without modifications. The two-phase versions will be watched with a 
debugger to check the results to machine precision. 

The third level of testing will be a comparison of results for the full TRAC 
developmental assessment matrix (as used for official TRAC-M releases). Printed results 
generally should match, but differences should be expected for some sensitive problems 
(e.g., reflood). In these instances, tests will be ntn to compare these deviations with 
deviations experienced from the use of different compilers and different optimization 
levels. 

This three-stage test procedure will be used for the initial versions of these Solvers and 
for later revisions introduced to permit a parallel version of the program. 
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D.2. Improved inter component Communication 

A request-driven communications method will be created based on requests from 
components or external programs for specifically named variables. The variable names 
will be passed as ASCII strings. In this initial phase of development, these requests will 
be made only during the initialization phase of a calculation. However, provisions will 
be made to permit a dynamic communication process, where the list of variables 
requested by a given component can occur at any time during the calculation. This will 
be useful in interactive simulations or for dynamic linking to other programs. 

Information transfer has been designed to permit a “read-only” transfer of information. 
The communication system intentionally prevents direct access by the requesting 
component to the storage of the requested information in the adjacent component. This 
is an attempt to localize errors in new components and limit poor programming 
practices involving alteration of data by unexpected portions of the program. It also lays 
a groundwork for parallel processing, providing values of communicating variables that 
are updated only at well-defined synchronization points in the execution of the program. 

No global storage will be created to hold component boundary information as is now the 
case with the component boundary array (bd). It is the responsibility of the requesting 
component to provide space for the transferred data. For example, consider the 
initialization process of a problem containing a Pipe component 10 with junctions 
numbered 1 and 2. To obtain one necessary piece of boundary information,-the pipe will 
ask the communication service for information named ”DX” from the first cell beyond 
junction 1, to be placed in the variable BDl%DX contained in the component 10 data 
structure. The communications service will consult the data structure to locate the 
component and. cell that is the first beyond junction 1. It will use a pointer location 
subroutine to determine what variable is associated with the ASCII name ”DX”. Finally, 
the service will make pointer associations within the service data structure to the 
appropriate source element of the DX array and to a destination BDl%DX. These source 
and destination pointers will reside in a derived-type array and will be used directly 
during the calculation for transfer of information. 

The key to flexibility will be low-level subroutines available to perform operations such 
as the one described above. These subroutines will not be restricted to obtaining 
information from the cell immediately adjacent to a junction and will, for example, 
respond correctly to a request for information in the third cell past a junction for use in a 
higher-order numerical method. Design of the communications also will permit its use 
for moving heat structure and control block information, but full implementation of 
these capabilities is not included in the level of effort for the initial task. In addition, the 
structure will be designed for later support of parellel virtual machine (PVM) requests 
for information and transfer of that information via PVM. 

D.2.1. Location of Component Junctions 

A component must register its flow connections with the system services to permit 
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correct intercomponent communication. This currently is accomplished within input 
and restart subroutines (Rpipe, Repipe, etc.) by filling in entries to the JUN array. The 
revised registration involves passing information to a junction cell data structure with a 
subroutine call. In this context, registration is required for both standard intercomponent 
junctions and intracomponent junctions, such as the junction of a Tee side leg to the 
primary leg. The subroutine doing the work is “junctions” and has the following 
interface: 

SUBROUTINE junctions (compNum, cellNum, junNums , vOutSign, theta, phi, dist, 
ncAdj) 

where the following definitions hold: 

compNwn 
cellNum 

junNum 

vOutSign 

theta 

dist 
ncAdj 

- input component number for the cell with this junction; 
- number for the cell containing the junction to another compo- 

nent (or to the other section of the same Tee); 
input component junction number, or generated junction num- 
ber, for an internal Connection; 
the sign of the velocity associated with flow out from the cell 
through this junction face (+1 or -1); 
the angle (degrees) between an inwardly directed-normal-to-the- 
junction face and the primary positive direction of motion 
within the component; 
the angle (degrees) between an inwardly directed-normal-to-the- 
junction face and a reference vector perpendicular to the 
primary positive direction of motion within the component; 
the distance between the cell center and the junction face; 
number of cells in this component adjacent to the junction face in 
the direction of the inward normal-to-the-junction face. 

- 

- 
- 

- 

- 
- 

When calculating theta in a Vessel, the primary positive direction of motion is taken to be 
the positive z direction. The reference vector for computing phi is taken to be pointing 
toward the center of the Vessel. This results in values of phi is 

1. zero for a connection in from the outer radial cell face, 
2. 90 degrees for a connection in from the high-numbered cell theta face, 
3. 180 degrees for a connection from an inner radial cell face, and 
4. 270 degrees for a connection from the low-numbered cell theta face. 

For registration of an intracomponent junction such as a Tee-side-leg connection, a 
unique junction number must be generated. This is accomplished with a reference to the 
function “interiorJunNum”, which returns a new unique (and negative) number with 
each call. For example, in a Tee component, the following coding would be appropriate 
for registration associated with the side leg: 
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junSide=interiorJunNum ( ) 
dist=. 5* wjcell (jcell, cost, gldAr (cci) %hd, gldAr (cci) %dx) 
angle = acos(cost)*180/pi 
CALL junctions (nun, jcell, junside, 1, angle, 0, dist, 1) 

CALL junctions (num, ncelllt2, junSj.de, -1, 0, 0, & 

.5* gldAr (cci) %dx (ncelll+2), ncellt-ncelll-1 ) 

The subroutine "junctions" installs the information from the dummy argument list into a 
derived-type array for further processing to index and locate boundary information: 

TYPE junctionCellsT 
INTEGER cco, compNum, cellNum, juncNun, vOutSign, otherside 
REAL theta, phi, cosTheta, dist 

END TYPE junctionCellsT 

TYPE (junctionCellsT), ALLOCATABLE, TARGET :: junCells(:) , 

where the components of the type have definitions matching those given above for 
arguments plus the following : 

cco 
otherside 

cosTheta - cosine of theta. 

- 
- 

index for the component in ordered arrays [e.g., gldAr(cco)]; 
index of the element in juncells containing information on the 
other side of this junction; and 

D.2.2. Transfer of Component Boundary Information 

During initialization, a component can set up for information transfer on several 
different schedules. Transfer is scheduled for calculation setup only, either once per 
timestep or once per cycle through components. Variables containing fixed geometry or 
index or flag information are transferred only during the initialization phase. This 
transfer occurs at every pass through components during initialization but does not 
continue beyond the start of the first timestep. Some variables become "old-time" 
quantities simply by transfer of the "new-time" value from the previous timestep. These 
are scheduled for transfer at the beginning of each timestep. Of the remaining variables, 
some may be generated only once during a specific phase of a timestep. However, 
modifications to numerical methods may alter the points at which such variables are 
recalculated. To retain maximum flexibility) this information is transferred after each 
cycle through all components. Consideration can be given to further refinement of the 
scheduling after the advanced code reaches a higher level of maturity. 

Most flow of information is as boundary values requested by a component. This is 
scheduled through calls to the subroutine "GetBDfor" during initialization. Its interface 
is in the form 

SUBROUTINE GetBDfor (compNum, juncNum, off set, varName, localStore), 
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where the following definitions hold: 
-4 

compNum - input - component number for the requesting component; 
junNum - input component junction number or generated junction num- 

ber for an internal connection; 
offset - number of cells or faces that the desired information is offset to 

the other side of the junction face (currently 1 for cell center 
information and 0 or 1 for cell face information); 
name (or alias) of the variable containing information needed; varName 

localstore - a pointer to local storage. 
- 

This subroutine will have a generic interface to accept the pointer "1ocalStore" as either a 
scalar or vector Integer or Real type. It will use low-level pointer assignment 
subroutines such as "GetArrayPointer" to associate the variable name (varName) with a 
pointer to the appropriate memory location and obtain a flag indicating whether the 
variable is to be transferred at the beginning of the calculation, beginning of the 
timestep, or on each cycle. A sorted version of "juncells" will be used to trace the 
location of the information. 

The result of calling GetFor is one or more entries in one of six communications tables. 
These are established by the ldllowing type definitions. 

TYPE t r a n s f e r R e a l T  

END TYPE t r a n s f e r R e a l T  
TYPE t r a n s f e r I n t T  

END TYPE t r a n s f e r I n t T  
TYPE ( t r a n s f e r R e a l T ) ,  ALLOCATABLE :: transonce, transstep,  transcycle 
TYPE ( t r a n s f e r I n t T ) ,  ALLOCATABLE :: itransonce, i t ranss tep ,  i transcycle 

REAL, POINTER, source, des t ina t ion  

INTEGER, POINTER, source,  d e s t i n a t i o n  

At appropriate points in the code, a very simple subroutine is called that loops through 
the elements in one of the transfer arrays making the necessary assignments. 

SUBROUTINE o n e T r a n s f e r  
IMPLICIT  NONE 
INTEGER i 
DO i = l , n T r a n s O n c e  

ENDDO 
RETURN 
END 

transonce (i) %des t ina t ion  = transonce (i) %source 

This subroutine is contained in the same module as the data structure and thus does not 
require a USE statement to access transonce. 
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D.2.3. Communica ion to Components in Other Processes 

Once basic intercomponent communication is functioning for standard TRAC problems, 
a class of components will be created named ”Exterior”. Input for the component will 
simply list the component number and a table of junction numbers and associated 
connection information. Connection information will include the cell to which the 
junction connects and whether the exterior component is responsible for computing the 
velocity at that face. The Exterior component subroutines and associated data structures 
will be very minimal, providing code for negotiating and passing boundary information 
to and from a parallel task that performs the detailed calculations for the actual Exterior 
component (or block of components). 

Communication between the Exterior component and its connection point in a parallel 
code will in some ways be similar to the transfer initiated by ”GetFor”. The initialization 
routine (Exterior) will pass out a request for an ordered data stream giving the ASCII 
variable name and location for each item required, along with a request for frequency of 
transmission. If the target program uses different nomenclature for physical variables, an 
intermediate translator program will intercept this request and pass it on to the target 
program. The initialization routine also will receive a data request stream from the target 
(translated if necessary) and schedule data transmissions. 

D.2.4. Communication for Heat Structures, Control Blocks, and Related Models 

Once the above commuriications are functioning, the’next task will be to create similar 
table-driven transfers for heat structures, signal variables, control blocks, and the 
radiation model. These components have direct knowledge of the connecting 
component and cell numbers. Table-driven transfer could be created by calls to 
initialization subroutines GetFrom and PutTo that directly reference the component and 
cell numbers from or to which information is to be transferred. Transfers would in some 
instances require different scheduling than discussed above. 

4 . :  

D.2.5. Testing of Communications 

The second and third phases of the test set described in Sec. D.1.3 should cover all of the 
communications functionality. These test problems will be reviewed to ensure that all 
component types are tested for all flows that include liquid and gas phases, 
noncondensables, and solute. 
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