6,163 research outputs found
Investigating the storage capacity of a network with cell assemblies
Cell assemblies are co-operating groups of neurons believed to exist in the brain. Their existence was proposed by the neuropsychologist D.O. Hebb who also formulated a mechanism by which they could form, now known as Hebbian learning. Evidence for the existence of Hebbian learning and cell assemblies in the brain is accumulating as investigation tools improve. Researchers have also simulated cell assemblies as neural networks in computers.
This thesis describes simulations of networks of cell assemblies. The feasibility of simulated cell assemblies that possess all the predicted properties of biological cell assemblies is established. Cell assemblies can be coupled together with weighted connections to form hierarchies in which a group of basic assemblies, termed primitives are connected in such a way that they form a compound cell assembly. The component assemblies of these hierarchies can be ignited independently, i.e. they are activated due to signals being passed entirely within the network, but if a sufficient number of them. are activated, they co-operate to ignite the remaining primitives in the compound assembly.
Various experiments are described in which networks of simulated cell assemblies are subject to external activation involving cells in those assemblies being stimulated artificially to a high level. These cells then fire, i.e. produce a spike of activity analogous to the spiking of biological neurons, and in this way pass their activity to other cells. Connections are established, by learning in some experiments and set artificially in others, between cells within primitives and in different ones, and these connections allow activity to pass from one primitive to another. In this way, activating one or more primitives may cause others to ignite. Experiments are described in which spontaneous activation of cells aids recruitment of uncommitted cells to a neighbouring assembly. The strong relationship between cell assemblies and Hopfield nets is described.
A network of simulated cells can support different numbers of assemblies depending on the complexity of those assemblies. Assemblies are classified in terms of how many primitives are present in each compound assembly and the minimum number needed to complete it. A 2-3 assembly contains 3 primitives, any 2 of which will complete it. A network of N cells can hold on the order of N 2-3 assemblies, and an architecture is proposed that contains O(N2) 3-4 assemblies. Experiments are described that show the number of connections emanating from each cell must be scaled up linearly as the number of primitives in any network .increases in order to maintain the same mean number of connections between each primitive. Restricting each cell to a maximum number of connections leads, to severe loss of performance as the size of the network increases. It is shown that the architecture can be duplicated with Hopfield nets, but that there are severe restrictions on the carrying capacity of either a hierarchy of cell assemblies or a Hopfield net storing 3-4 patterns, and that the promise of N2 patterns is largely illusory. When the number of connections from each cell is fixed as the number of primitives is increased, only O(N) cell assemblies can be stored
Context effects on second-language learning of tonal contrasts.
Studies of lexical tone learning generally focus on monosyllabic contexts, while reports of phonetic learning benefits associated with input variability are based largely on experienced learners. This study trained inexperienced learners on Mandarin tonal contrasts to test two hypotheses regarding the influence of context and variability on tone learning. The first hypothesis was that increased phonetic variability of tones in disyllabic contexts makes initial tone learning more challenging in disyllabic than monosyllabic words. The second hypothesis was that the learnability of a given tone varies across contexts due to differences in tonal variability. Results of a word learning experiment supported both hypotheses: tones were acquired less successfully in disyllables than in monosyllables, and the relative difficulty of disyllables was closely related to contextual tonal variability. These results indicate limited relevance of monosyllable-based data on Mandarin learning for the disyllabic majority of the Mandarin lexicon. Furthermore, in the short term, variability can diminish learning; its effects are not necessarily beneficial but dependent on acquisition stage and other learner characteristics. These findings thus highlight the importance of considering contextual variability and the interaction between variability and type of learner in the design, interpretation, and application of research on phonetic learning
Motion/visual cueing requirements for vortex encounters during simulated transport visual approach and landing
This paper addresses the issues of motion/visual cueing fidelity requirements for vortex encounters during simulated transport visual approaches and landings. Four simulator configurations were utilized to provide objective performance measures during simulated vortex penetrations, and subjective comments from pilots were collected. The configurations used were as follows: fixed base with visual degradation (delay), fixed base with no visual degradation, moving base with visual degradation (delay), and moving base with no visual degradation. The statistical comparisons of the objective measures and the subjective pilot opinions indicated that although both minimum visual delay and motion cueing are recommended for the vortex penetration task, the visual-scene delay characteristics were not as significant a fidelity factor as was the presence of motion cues. However, this indication was applicable to a restricted task, and to transport aircraft. Although they were statistically significant, the effects of visual delay and motion cueing on the touchdown-related measures were considered to be of no practical consequence
Secondary Irregularities in the Equatorial Electrojet
Instrumentation techniques and autocorrelation analysis procedures for secondary equatorial electrojet irregularitie
Development of a VOR/DME model for an advanced concepts simulator
The report presents a definition of a VOR/DME, airborne and ground systems simulation model. This description was drafted in response to a need in the creation of an advanced concepts simulation in which flight station design for the 1980 era can be postulated and examined. The simulation model described herein provides a reasonable representation of VOR/DME station in the continental United States including area coverage by type and noise errors. The detail in which the model has been cast provides the interested researcher with a moderate fidelity level simulator tool for conducting research and evaluation of navigator algorithms. Assumptions made within the development are listed and place certain responsibilities (data bases, communication with other simulation modules, uniform round earth, etc.) upon the researcher
Pitch ability as an aptitude for tone learning
Tone languages such as Mandarin use voice pitch to signal lexical contrasts, presenting a challenge for second/foreign language (L2) learners whose native languages do not use pitch in this manner. The present study examined components of an aptitude for mastering L2 lexical tone. Native English speakers with no previous tone language experience completed a Mandarin word learning task, as well as tests of pitch ability, musicality, L2 aptitude, and general cognitive ability. Pitch ability measures improved predictions of learning performance beyond musicality, L2 aptitude, and general cognitive ability and also predicted transfer of learning to new talkers. In sum, although certain nontonal measures help predict successful tone learning, the central components of tonal aptitude are pitch-specific perceptual measures
Landscapes, dynamic heterogeneity and kinetic facilitation in a simple off-lattice model
We present a simple off-lattice hard-disc model that exhibits glassy
dynamics. The inherent structures are enumerated exactly, transitions between
metabasins are well understood, and the particle configurations that act to
facilitate dynamics are easily identified. The model readily maps to a coarse
grained dynamic facilitation description.Comment: 5 pages, 5 figures, submitted to PR
- …