288 research outputs found

    Biology and Conservation of Horseshoe Crabs

    Get PDF
    We dedicate this book to Drs. Carl N. Shuster, Jr. and Koichi Sekiguchi for their life-long contributions to the biology and conservation of the magnificent horseshoe crab

    Smartphone scene generator for efficient characterization of visible imaging detectors

    Full text link
    Full characterization of imaging detectors involves subjecting them to spatially and temporally varying illumination patterns over a large dynamic range. Here we present a scene generator that fulfills many of these functions. Based on a modern smartphone, it has a number of good features, including the ability to generate nearly arbitrary optical scenes, high spatial resolution (13 um), high dynamic range (~10^4), near-Poisson limited illumination stability over time periods from 100 ms to many days, and no background noise. The system does not require any moving parts and may be constructed at modest cost. We present the optical, mechanical, and software design, test data validating the performance, and application examples.Comment: 14 pages. This version includes code, available here: https://github.com/Leo-Nea

    Smartphone screens as astrometric calibrators

    Full text link
    Geometric optical distortion is a significant contributor to the astrometric error budget in large telescopes using adaptive optics. To increase astrometric precision, optical distortion calibration is necessary. We investigate using smartphone OLED screens as astrometric calibrators. Smartphones are low cost, have stable illumination, and can be quickly reconfigured to probe different spatial frequencies of an optical system's geometric distortion. In this work, we characterize the astrometric accuracy of a Samsung S20 smartphone, with a view towards providing large format, flexible astrometric calibrators for the next generation of astronomical instruments. We find the placement error of the pixels to be 189 nm +/- 15 nm RMS. At this level of error, milliarcsecond astrometric accuracy can be obtained on modern astronomical instruments.Comment: 15 pages, 11 figures; accepted, Journal of Astronomical Instrumentatio

    The High-Flux Backscattering Spectrometer at the NIST Center for Neutron Research

    Full text link
    We describe the design and current performance of the high-flux backscattering spectrometer located at the NIST Center for Neutron Research. The design incorporates several state-of-the-art neutron optical devices to achieve the highest flux on sample possible while maintaining an energy resolution of less than 1mueV. Foremost among these is a novel phase-space transformation chopper that significantly reduces the mismatch between the beam divergences of the primary and secondary parts of the instrument. This resolves a long-standing problem of backscattering spectrometers, and produces a relative gain in neutron flux of 4.2. A high-speed Doppler-driven monochromator system has been built that is capable of achieving energy transfers of up to +-50mueV, thereby extending the dynamic range of this type of spectrometer by more than a factor of two over that of other reactor-based backscattering instruments

    Improving the Information Security Model by using TFI

    Get PDF
    In the context of information systems and information technology, information security is a concept that is becoming widely used. The European Network of Excellence INTEROP classifies information security as a nonfunctional aspect of interoperability and as such it is an integral part of the design process for interoperable systems. In the last decade, academics and practitioners have shown their interest in information security, for example by developing security models for evaluating products and setting up security specifications in order to safeguard the confidentiality, integrity, availability and accountability of data. Earlier research has shown that measures to achieve information security in the administrative or organisational level are missing or inadequate. Therefore, there is a need to improve information security models by including vital elements of information security. In this paper, we introduce a holistic view of information security based on a Swedish model combined with a literature survey. Furthermore we suggest extending this model using concepts based on semiotic theory and adopting the view of an information system as constituted of the technical, formal and informal (TFI) parts. The aim is to increase the understanding of the information security domain in order to develop a well-founded theoretical framework, which can be used both in the analysis and the design phase of interoperable systems. Finally, we describe and apply the Information Security (InfoSec) model to the results of three different case studies in the healthcare domain. Limits of the model will be highlighted and an extension will be proposed.In the context of information systems and information technology, information security is a concept that is becoming widely used. The European Network of Excellence INTEROP classifies information security as a nonfunctional aspect of interoperability and as such it is an integral part of the design process for interoperable systems. In the last decade, academics and practitioners have shown their interest in information security, for example by developing security models for evaluating products and setting up security specifications in order to safeguard the confidentiality, integrity, availability and accountability of data. Earlier research has shown that measures to achieve information security in the administrative or organisational level are missing or inadequate. Therefore, there is a need to improve information security models by including vital elements of information security. In this paper, we introduce a holistic view of information security based on a Swedish model combined with a literature survey. Furthermore we suggest extending this model using concepts based on semiotic theory and adopting the view of an information system as constituted of the technical, formal and informal (TFI) parts. The aim is to increase the understanding of the information security domain in order to develop a well-founded theoretical framework, which can be used both in the analysis and the design phase of interoperable systems. Finally, we describe and apply the Information Security (InfoSec) model to the results of three different case studies in the healthcare domain. Limits of the model will be highlighted and an extension will be proposed.Monograph's chapter

    Effect of Salt on Phosphorylcholine-based Zwitterionic Polymer Brushes.

    Get PDF
    A quantitative investigation of the responses of surface-grown biocompatible brushes of poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) to different types of salt has been carried out using ellipsometry, quartz crystal microbalance (QCM) measurements, and friction force microscopy. Both cations and anions of varying valency over a wide range of concentrations were examined. Ellipsometry shows that the height of the brushes is largely independent of the ionic strength, confirming that the degree of swelling of the polymer is independent of the ionic character of the medium. In contrast, QCM measurements reveal significant changes in mass and dissipation to the PMPC brush layer, suggesting that ions bind to phosphorylcholine (PC) groups in PMPC molecules, which results in changes in the stiffness of the brush layer, and the binding affinity varies with salt type. Nanotribological measurements made using friction force microscopy show that the coefficient of friction decreases with increasing ionic strength for a variety of salts, supporting the conclusion drawn from QCM measurements. It is proposed that the binding of ions to the PMPC molecules does not change their hydration state, and hence the height of the surface-grown polymeric brushes. However, the balance of the intra- and intermolecular interactions is strongly dependent upon the ionic character of the medium between the hydrated chains, modulating the interactions between the zwitterionic PC pendant groups and, consequently, the stiffness of the PMPC molecules in the brush layer
    • …
    corecore