9,043 research outputs found
Radiating black hole solutions in Einstein-Gauss-Bonnet gravity
In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet
equations. First, we prove a theorem which allows us to find a large family of
solutions to the Einstein-Gauss-Bonnet gravity in -dimensions. This family
of solutions represents dynamic black holes and contains, as particular cases,
not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also
other physical solutions that we think are new, such as, the Gauss-Bonnet
versions of the Bonnor-Vaidya(de Sitter/anti-de Sitter) solution, a global
monopole and the Husain black holes. We also present a more general version of
this theorem in which less restrictive conditions on the energy-momentum tensor
are imposed. As an application of this theorem, we present the exact solution
describing a black hole radiating a charged null fluid in a Born-Infeld
nonlinear electrodynamics
Vacuum field correlations and three-body Casimir-Polder potential with one excited atom
The three-body Casimir-Polder potential between one excited and two
ground-state atoms is evaluated. A physical model based on the dressed field
correlations of vacuum fluctuations is used, generalizing a model previously
introduced for three ground-state atoms. Although the three-body potential with
one excited atom is already known in the literature, our model gives new
insights on the nature of non-additive Casimir-Polder forces with one or more
excited atoms.Comment: 9 page
Comment on `On the Quantum Theory of Molecules' [J. Chem.Phys. {\bf 137}, 22A544 (2012)]
In our previous paper [J. Chem.Phys. {\bf 137}, 22A544 (2012)] we argued that
the Born-Oppenheimer approximation could not be based on an exact
transformation of the molecular Schr\"{o}dinger equation. In this Comment we
suggest that the fundamental reason for the approximate nature of the
Born-Oppenheimer model is the lack of a complete set of functions for the
electronic space, and the need to describe the continuous spectrum using
spectral projection.Comment: 2 page
Polarization and ellipticity of high-order harmonics from aligned molecules generated by linearly polarized intense laser pulses
We present theoretical calculations for polarization and ellipticity of
high-order harmonics from aligned N, CO, and O molecules generated
by linearly polarized lasers. Within the rescattering model, the two
polarization amplitudes of the harmonics are determined by the
photo-recombination amplitudes for photons emitted parallel and perpendicular
to the direction of the {\em same} returning electron wave packet. Our results
show clear species-dependent polarization states, in excellent agreement with
experiments. We further note that the measured polarization ellipse of the
harmonic furnishes the needed parameters for a "complete" experiment in
molecules.Comment: 4 pages, 4 figure
Rotating charged Black Holes in Einstein-Born-Infeld theories and their ADM mass
In this work, the solution of the Einstein equations for a slowly rotating
black hole with Born-Infeld charge is obtained. Geometrical properties and
horizons of this solution are analyzed. The conditions when the ADM mass (as in
the nonlinear static cases) and the ADM angular momentum of the system have
been modified by the non linear electromagnetic field of the black hole, are
considered.Comment: Final version and figures in journal. References and comments adde
Ab initio Wannier-function-based many-body approach to Born charge of crystalline insulators
In this paper we present an approach aimed at performing many-body
calculations of Born-effective charges of crystalline insulators, by including
the electron-correlation effects. The scheme is implemented entirely in the
real space, using Wannier-functions as single-particle orbitals. Correlation
effects are computed by including virtual excitations from the Hartree-Fock
mean field, and the excitations are organized as per a Bethe-Goldstone-like
many-body hierarchy. The results of our calculations suggest that the approach
presented here is promising.Comment: 5 pages, to appear in Phys. Rev. B. (Rapid Comm., Dec 15, 2004
Capacitive pressure transducer system
Closed loop capacitive pressure transducer with extended frequency response for very low pressure measurement
Thermal conductance of graphene and dimerite
We investigate the phonon thermal conductance of graphene regarding the
graphene sheet as the large-width limit of graphene strips in the ballistic
limit. We find that the thermal conductance depends weakly on the direction
angle of the thermal flux periodically with period . It is
further shown that the nature of this directional dependence is the directional
dependence of group velocities of the phonon modes in the graphene, originating
from the symmetry in the honeycomb structure. By breaking the
symmetry in graphene, we see more obvious anisotropic effect in the thermal
conductance as demonstrated by dimerite.Comment: enlarged version, in PR
Transient behavior of surface plasmon polaritons scattered at a subwavelength groove
We present a numerical study and analytical model of the optical near-field
diffracted in the vicinity of subwavelength grooves milled in silver surfaces.
The Green's tensor approach permits computation of the phase and amplitude
dependence of the diffracted wave as a function of the groove geometry. It is
shown that the field diffracted along the interface by the groove is equivalent
to replacing the groove by an oscillating dipolar line source. An analytic
expression is derived from the Green's function formalism, that reproduces well
the asymptotic surface plasmon polariton (SPP) wave as well as the transient
surface wave in the near-zone close to the groove. The agreement between this
model and the full simulation is very good, showing that the transient
"near-zone" regime does not depend on the precise shape of the groove. Finally,
it is shown that a composite diffractive evanescent wave model that includes
the asymptotic SPP can describe the wavelength evolution in this transient
near-zone. Such a semi-analytical model may be useful for the design and
optimization of more elaborate photonic circuits whose behavior in large part
will be controlled by surface waves.Comment: 12 pages, 10 figure
A code to unfold scintillation spectrometer polyenergetic gamma photon experimental distributions
FORTRAN code to unfold sodium iodide scintillation spectrometer polyenergetic gamma photon experimental distribution
- …
