8 research outputs found

    FIEFDom: a transparent domain boundary recognition system using a fuzzy mean operator

    Get PDF
    Protein domain prediction is often the preliminary step in both experimental and computational protein research. Here we present a new method to predict the domain boundaries of a multidomain protein from its amino acid sequence using a fuzzy mean operator. Using the nr-sequence database together with a reference protein set (RPS) containing known domain boundaries, the operator is used to assign a likelihood value for each residue of the query sequence as belonging to a domain boundary. This procedure robustly identifies contiguous boundary regions. For a dataset with a maximum sequence identity of 30%, the average domain prediction accuracy of our method is 97% for one domain proteins and 58% for multidomain proteins. The presented model is capable of using new sequence/structure information without re-parameterization after each RPS update. When tested on a current database using a four year old RPS and on a database that contains different domain definitions than those used to train the models, our method consistently yielded the same accuracy while two other published methods did not. A comparison with other domain prediction methods used in the CASP7 competition indicates that our method performs better than existing sequence-based methods

    Prediction of Protein Domain with mRMR Feature Selection and Analysis

    Get PDF
    The domains are the structural and functional units of proteins. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop effective methods for predicting the protein domains according to the sequences information alone, so as to facilitate the structure prediction of proteins and speed up their functional annotation. However, although many efforts have been made in this regard, prediction of protein domains from the sequence information still remains a challenging and elusive problem. Here, a new method was developed by combing the techniques of RF (random forest), mRMR (maximum relevance minimum redundancy), and IFS (incremental feature selection), as well as by incorporating the features of physicochemical and biochemical properties, sequence conservation, residual disorder, secondary structure, and solvent accessibility. The overall success rate achieved by the new method on an independent dataset was around 73%, which was about 28–40% higher than those by the existing method on the same benchmark dataset. Furthermore, it was revealed by an in-depth analysis that the features of evolution, codon diversity, electrostatic charge, and disorder played more important roles than the others in predicting protein domains, quite consistent with experimental observations. It is anticipated that the new method may become a high-throughput tool in annotating protein domains, or may, at the very least, play a complementary role to the existing domain prediction methods, and that the findings about the key features with high impacts to the domain prediction might provide useful insights or clues for further experimental investigations in this area. Finally, it has not escaped our notice that the current approach can also be utilized to study protein signal peptides, B-cell epitopes, HIV protease cleavage sites, among many other important topics in protein science and biomedicine
    corecore