704 research outputs found

    Informative Group Testing for Multiplex Assays

    Get PDF
    Infectious disease testing frequently takes advantage of two tools–group testing and multiplex assays–to make testing timely and cost effective. Until the work of Tebbs et al. (2013) and Hou et al. (2017), there was no research available to understand how best to apply these tools simultaneously. This recent work focused on applications where each individual is considered to be identical in terms of the probability of disease. However, risk-factor information, such as past behavior and presence of symptoms, is very often available on each individual to allow one to estimate individual-specific probabilities. The purpose of our paper is to propose the first group testing algorithms for multiplex assays that take advantage of individual risk-factor information as expressed by these probabilities. We show that our methods significantly reduce the number of tests required while preserving accuracy. Throughout this paper, we focus on applying our methods with the Aptima Combo 2 Assay that is used worldwide for chlamydia and gonorrhea screening

    Estimating the prevalence of two or more diseases using outcomes from multiplex group testing

    Get PDF
    When screening a population for infectious diseases, pooling individual specimens (e.g., blood, swabs, urine, etc.) can provide enormous cost savings when compared to testing specimens individually. In the biostatistics literature, testing pools of specimens is commonly known as group testing or pooled testing. Although estimating a population-level prevalence with group testing data has received a large amount of attention, most of this work has focused on applications involving a single disease, such as human immunodeficiency virus. Modern methods of screening now involve testing pools and individuals for multiple diseases simultaneously through the use of multiplex assays. Hou et al. (2017, Biometrics, 73, 656–665) and Hou et al. (2020, Biostatistics, 21, 417–431) recently proposed group testing protocols for multiplex assays and derived relevant case identification characteristics, including the expected number of tests and those which quantify classification accuracy. In this article, we describe Bayesian methods to estimate population-level disease probabilities from implementing these protocols or any other multiplex group testing protocol which might be carried out in practice. Our estimation methods can be used with multiplex assays for two or more diseases while incorporating the possibility of test misclassification for each disease. We use chlamydia and gonorrhea testing data collected at the State Hygienic Laboratory at the University of Iowa to illustrate our work. We also provide an online R resource practitioners can use to implement the methods in this article

    Decoding Continuous Variables from Neuroimaging Data: Basic and Clinical Applications

    Get PDF
    The application of statistical machine learning techniques to neuroimaging data has allowed researchers to decode the cognitive and disease states of participants. The majority of studies using these techniques have focused on pattern classification to decode the type of object a participant is viewing, the type of cognitive task a participant is completing, or the disease state of a participant's brain. However, an emerging body of literature is extending these classification studies to the decoding of values of continuous variables (such as age, cognitive characteristics, or neuropsychological state) using high-dimensional regression methods. This review details the methods used in such analyses and describes recent results. We provide specific examples of studies which have used this approach to answer novel questions about age and cognitive and disease states. We conclude that while there is still much to learn about these methods, they provide useful information about the relationship between neural activity and age, cognitive state, and disease state, which could not have been obtained using traditional univariate analytical methods

    binGroup2: Statistical Tools for Infection Identification via Group Testing

    Get PDF
    Group testing is the process of testing items as an amalgamation, rather than separately, to determine the binary status for each item. Its use was especially important during the COVID-19 pandemic through testing specimens for SARS-CoV-2. The adoption of group testing for this and many other applications is because members of a negative testing group can be declared negative with potentially only one test. This subsequently leads to significant increases in laboratory testing capacity. Whenever a group testing algorithm is put into practice, it is critical for laboratories to understand the algorithm’s operating characteristics, such as the expected number of tests. Our paper presents the binGroup2 package that provides the statistical tools for this purpose. This R package is the first to address the identification aspect of group testing for a wide variety of algorithms. We illustrate its use through COVID-19 and chlamydia/gonorrhea applications of group testing

    Decoding Developmental Differences and Individual Variability in Response Inhibition Through Predictive Analyses Across Individuals

    Get PDF
    Response inhibition is thought to improve throughout childhood and into adulthood. Despite the relationship between age and the ability to stop ongoing behavior, questions remain regarding whether these age-related changes reflect improvements in response inhibition or in other factors that contribute to response performance variability. Functional neuroimaging data shows age-related changes in neural activity during response inhibition. While traditional methods of exploring neuroimaging data are limited to determining correlational relationships, newer methods can determine predictability and can begin to answer these questions. Therefore, the goal of the current study was to determine which aspects of neural function predict individual differences in age, inhibitory function, response speed, and response time variability. We administered a stop-signal task requiring rapid inhibition of ongoing motor responses to healthy participants aged 9–30. We conducted a standard analysis using GLM and a predictive analysis using high-dimensional regression methods. During successful response inhibition we found regions typically involved in motor control, such as the ACC and striatum, that were correlated with either age, response inhibition (as indexed by stop-signal reaction time; SSRT), response speed, or response time variability. However, when examining which variables neural data could predict, we found that age and SSRT, but not speed or variability of response execution, were predicted by neural activity during successful response inhibition. This predictive relationship provides novel evidence that developmental differences and individual differences in response inhibition are related specifically to inhibitory processes. More generally, this study demonstrates a new approach to identifying the neurocognitive bases of individual differences

    Predicting risky choices from brain activity patterns

    Get PDF
    Previous research has implicated a large network of brain regions in the processing of risk during decision making. However, it has not yet been determined if activity in these regions is predictive of choices on future risky decisions. Here, we examined functional MRI data from a large sample of healthy subjects performing a naturalistic risk-taking task and used a classification analysis approach to predict whether individuals would choose risky or safe options on upcoming trials. We were able to predict choice category successfully in 71.8% of cases. Searchlight analysis revealed a network of brain regions where activity patterns were reliably predictive of subsequent risk-taking behavior, including a number of regions known to play a role in control processes. Searchlights with significant predictive accuracy were primarily located in regions more active when preparing to avoid a risk than when preparing to engage in one, suggesting that risk taking may be due, in part, to a failure of the control systems necessary to initiate a safe choice. Additional analyses revealed that subject choice can be successfully predicted with minimal decrements in accuracy using highly condensed data, suggesting that information relevant for risky choice behavior is encoded in coarse global patterns of activation as well as within highly local activation within searchlights

    Memory systems in schizophrenia: Modularity is preserved but deficits are generalized

    Get PDF
    OBJECTIVE: Schizophrenia patients exhibit impaired working and episodic memory, but this may represent generalized impairment across memory modalities or performance deficits restricted to particular memory systems in subgroups of patients. Furthermore, it is unclear whether deficits are unique from those associated with other disorders. METHOD: Healthy controls (n=1101) and patients with schizophrenia (n=58), bipolar disorder (n=49) and attention-deficit-hyperactivity-disorder (n=46) performed 18 tasks addressing primarily verbal and spatial episodic and working memory. Effect sizes for group contrasts were compared across tasks and the consistency of subjects\u27 distributional positions across memory domains was measured. RESULTS: Schizophrenia patients performed poorly relative to the other groups on every test. While low to moderate correlation was found between memory domains (r=.320), supporting modularity of these systems, there was limited agreement between measures regarding each individual\u27s task performance (ICC=.292) and in identifying those individuals falling into the lowest quintile (kappa=0.259). A general ability factor accounted for nearly all of the group differences in performance and agreement across measures in classifying low performers. CONCLUSIONS: Pathophysiological processes involved in schizophrenia appear to act primarily on general abilities required in all tasks rather than on specific abilities within different memory domains and modalities. These effects represent a general shift in the overall distribution of general ability (i.e., each case functioning at a lower level than they would have if not for the illness), rather than presence of a generally low-performing subgroup of patients. There is little evidence that memory impairments in schizophrenia are shared with bipolar disorder and ADHD
    • …
    corecore