140 research outputs found

    Glacial lakes exacerbate Himalayan glacier mass loss

    Get PDF
    Heterogeneous glacier mass loss has occurred across High Mountain Asia on a multi-decadal timescale. Contrasting climatic settings influence glacier behaviour at the regional scale, but high intra-regional variability in mass loss rates points to factors capable of amplifying glacier recession in addition to climatic change along the Himalaya. Here we examine the influence of surface debris cover and glacial lakes on glacier mass loss across the Himalaya since the 1970s. We find no substantial difference in the mass loss of debris-covered and clean-ice glaciers over our study period, but substantially more negative (−0.13 to −0.29 m w.e.a−1) mass balances for lake-terminating glaciers, in comparison to land-terminating glaciers, with the largest differences occurring after 2000. Despite representing a minor portion of the total glacier population (~10%), the recession of lake-terminating glaciers accounted for up to 32% of mass loss in different sub-regions. The continued expansion of established glacial lakes, and the preconditioning of land-terminating glaciers for new lake development increases the likelihood of enhanced ice mass loss from the region in coming decades; a scenario not currently considered in regional ice mass loss projections

    The mano river union approach

    Full text link

    Aligning Non-Causal Factors for Transformer-Based Source-Free Domain Adaptation

    Full text link
    Conventional domain adaptation algorithms aim to achieve better generalization by aligning only the task-discriminative causal factors between a source and target domain. However, we find that retaining the spurious correlation between causal and non-causal factors plays a vital role in bridging the domain gap and improving target adaptation. Therefore, we propose to build a framework that disentangles and supports causal factor alignment by aligning the non-causal factors first. We also investigate and find that the strong shape bias of vision transformers, coupled with its multi-head attention, make it a suitable architecture for realizing our proposed disentanglement. Hence, we propose to build a Causality-enforcing Source-Free Transformer framework (C-SFTrans) to achieve disentanglement via a novel two-stage alignment approach: a) non-causal factor alignment: non-causal factors are aligned using a style classification task which leads to an overall global alignment, b) task-discriminative causal factor alignment: causal factors are aligned via target adaptation. We are the first to investigate the role of vision transformers (ViTs) in a privacy-preserving source-free setting. Our approach achieves state-of-the-art results in several DA benchmarks.Comment: WACV 2024. Project Page: https://val.cds.iisc.ac.in/C-SFTrans

    Effect of vitamin D supplementation on bone health parameters of healthy young Indian women

    Get PDF
    Summary There is a huge prevalence of hypovitaminosis D in the Indian population. We studied the efficacy and safety of oral vitamin D supplementation in apparently healthy adult women. Monthly cholecalciferol given orally, 60,000 IU/month during summers and 120,000 IU/month during winters, safely increases 25-hydroxyvitamin D (25 (OH)D) levels to near normal levels. Introduction There is a huge burden of hypovitaminosis D in the Indian population. The current recommendation for vitamin D supplementation is not supported by sufficient evidence. Methods Study subjects included 100 healthy adult women of reproductive age group from hospital staff. They wer

    A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya

    Get PDF
    On 7 Feb 2021, a catastrophic mass flow descended the Ronti Gad, Rishiganga, and Dhauliganga valleys in Chamoli, Uttarakhand, India, causing widespread devastation and severely damaging two hydropower projects. Over 200 people were killed or are missing. Our analysis of satellite imagery, seismic records, numerical model results, and eyewitness videos reveals that ~27x106 m3 of rock and glacier ice collapsed from the steep north face of Ronti Peak. The rock and ice avalanche rapidly transformed into an extraordinarily large and mobile debris flow that transported boulders >20 m in diameter, and scoured the valley walls up to 220 m above the valley floor. The intersection of the hazard cascade with downvalley infrastructure resulted in a disaster, which highlights key questions about adequate monitoring and sustainable development in the Himalaya as well as other remote, high-mountain environments
    • …
    corecore