1,634 research outputs found

    Phase locking a clock oscillator to a coherent atomic ensemble

    Get PDF
    The sensitivity of an atomic interferometer increases when the phase evolution of its quantum superposition state is measured over a longer interrogation interval. In practice, a limit is set by the measurement process, which returns not the phase, but its projection in terms of population difference on two energetic levels. The phase interval over which the relation can be inverted is thus limited to the interval [−π/2,π/2][-\pi/2,\pi/2]; going beyond it introduces an ambiguity in the read out, hence a sensitivity loss. Here, we extend the unambiguous interval to probe the phase evolution of an atomic ensemble using coherence preserving measurements and phase corrections, and demonstrate the phase lock of the clock oscillator to an atomic superposition state. We propose a protocol based on the phase lock to improve atomic clocks under local oscillator noise, and foresee the application to other atomic interferometers such as inertial sensors.Comment: 9 pages, 7 figure

    Trajectories in the Context of the Quantum Newton's Law

    Full text link
    In this paper, we apply the one dimensional quantum law of motion, that we recently formulated in the context of the trajectory representation of quantum mechanics, to the constant potential, the linear potential and the harmonic oscillator. In the classically allowed regions, we show that to each classical trajectory there is a family of quantum trajectories which all pass through some points constituting nodes and belonging to the classical trajectory. We also discuss the generalization to any potential and give a new definition for de Broglie's wavelength in such a way as to link it with the length separating adjacent nodes. In particular, we show how quantum trajectories have as a limit when ℏ→0\hbar \to 0 the classical ones. In the classically forbidden regions, the nodal structure of the trajectories is lost and the particle velocity rapidly diverges.Comment: 17 pages, LateX, 6 eps figures, minor modifications, Title changed, to appear in Physica Script

    Ground-based detection of a vibration-rotation line of HD in Orion

    Get PDF
    The v =1-0 R(5) line of HD at 2.46um has been detected at the position of brightest line emission of shocked H2 in the Orion Molecular Cloud. The flux in this HD line, when compared to that of the previously detected HD 0--0 R(5) line at 19.43um, suggests that, like the v=1 levels of H2, the v=1 levels of HD are populated in LTE, despite their much higher rates of spontaneous emission compared to H2. The higher than expected population of vibrationally excited HD may be due to chemical coupling of HD to H2 via the reactive collisions HD + H H2 + D in the shocked gas. The deuterium abundance implied by the strengths of these lines relative to those of H2 is (5.1 pm 1.9 x 10^-6.Comment: 9 pages, 2 figures, Proceedings of the Conference on "Deuterium in the Universe," to be published in Planetary and Space Science

    Wide-field mid-infrared and millimetre imaging of the high-redshift radio galaxy, 4C41.17

    Get PDF
    We present deep 350- and 1200-micron imaging of the region around 4C41.17 -- one of the most distant (z = 3.792) and luminous known radio galaxies -- obtained with the Submillimeter High Angular Resolution Camera (SHARC-II) and the Max Planck Millimeter Bolometer Array (MAMBO). The radio galaxy is robustly detected at 350- and 1200-micron, as are two nearby 850-micron-selected galaxies; a third 850-micron source is detected at 350-micron and coincides with a ~ 2-sigma feature in the 1200-micron map. Further away from the radio galaxy an additional nine sources are detected at 1200-micron, bringing the total number of detected (sub)millimeter selected galaxies (SMGs) in this field to 14. Using radio images from the Very Large Array (VLA) and Spitzer mid-infrared (mid-IR) data, we find statistically robust radio and/or 24-micron counterparts to eight of the 14 SMGs in the field around 4C41.17. Follow-up spectroscopy with Keck/LRIS has yielded redshifts for three of the eight robustly identified SMGs, placing them in the redshift range 0.5 < z < 2.7, i.e. well below that of 4C41.17. We infer photometric redshifts for a further four sources using their 1.6-micron (rest-frame) stellar feature as probed by the IRAC bands; only one of them is likely to be at the same redshift as 4C41.17. Thus at least four, and as many as seven, of the SMGs within the 4C41.17 field are physically unrelated to the radio galaxy. With the redshift information at hand we are able to constrain the observed over-densities of SMGs within radial bins stretching to R=50 and 100" (~ 0.4 and ~ 0.8Mpc at z ~ 3.8) from the radio galaxy to ~ 5x and ~ 2x that of the field, dropping off to the background value at R=150". [Abridged]Comment: 20 pages, 9 figures, accepted for publication in MNRA

    A Kiloparsec-Scale Hyper-Starburst in a Quasar Host Less than 1 Gigayear after the Big Bang

    Full text link
    The host galaxy of the quasar SDSS J114816.64+525150.3 (at redshift z=6.42, when the Universe was <1 billion years old) has an infrared luminosity of 2.2x10^13 L_sun, presumably significantly powered by a massive burst of star formation. In local examples of extremely luminous galaxies such as Arp220, the burst of star formation is concentrated in the relatively small central region of <100pc radius. It is unknown on which scales stars are forming in active galaxies in the early Universe, which are likely undergoing their initial burst of star formation. We do know that at some early point structures comparable to the spheroidal bulge of the Milky Way must have formed. Here we report a spatially resolved image of [CII] emission of the host galaxy of J114816.64+525150.3 that demonstrates that its star forming gas is distributed over a radius of ~750pc around the centre. The surface density of the star formation rate averaged over this region is ~1000 M_sun/yr/kpc^2. This surface density is comparable to the peak in Arp220, though ~2 orders of magnitudes larger in area. This vigorous star forming event will likely give rise to a massive spheroidal component in this system.Comment: Nature, in press, Feb 5 issue, p. 699-70

    Feedback control of trapped coherent atomic ensembles

    Full text link
    We demonstrate how to use feedback to control the internal states of trapped coherent ensembles of two-level atoms, and to protect a superposition state against the decoherence induced by a collective noise. Our feedback scheme is based on weak optical measurements with negligible back-action and coherent microwave manipulations. The efficiency of the feedback system is studied for a simple binary noise model and characterized in terms of the trade-off between information retrieval and destructivity from the optical probe. We also demonstrate the correction of more general types of collective noise. This technique can be used for the operation of atomic interferometers beyond the standard Ramsey scheme, opening the way towards improved atomic sensors.Comment: 9 pages, 6 figure

    Observations of Dense Molecular Gas in a Quasar Host Galaxy at z=6.42: Further Evidence for a Non-Linear Dense Gas - Star Formation Relation at Early Cosmic Times

    Full text link
    We report a sensitive search for the HCN(J=2-1) emission line towards SDSS J1148+5251 at z=6.42 with the VLA. HCN emission is a star formation indicator, tracing dense molecular hydrogen gas (n(H2) >= 10^4 cm^-3) within star-forming molecular clouds. No emission was detected in the deep interferometer maps of J1148+5251. We derive a limit for the HCN line luminosity of L'(HCN) < 3.3 x 10^9 K km/s pc^2, corresponding to a HCN/CO luminosity ratio of L'(HCN)/L'(CO) < 0.13. This limit is consistent with a fraction of dense molecular gas in J1148+5251 within the range of nearby ultraluminous infrared galaxies (ULIRGs; median value: L'(HCN)/L'(CO) = 0.17 {+0.05/-0.08}) and HCN-detected z>2 galaxies (0.17 {+0.09/-0.08}). The relationship between L'(HCN) and L(FIR) is considered to be a measure for the efficiency at which stars form out of dense gas. In the nearby universe, these quantities show a linear correlation, and thus, a practically constant average ratio. In J1148+5251, we find L(FIR)/L'(HCN) > 6600. This is significantly higher than the average ratios for normal nearby spiral galaxies (L(FIR)/L'(HCN) = 580 {+510/-270}) and ULIRGs (740 {+505/-50}), but consistent with a rising trend as indicated by other z>2 galaxies (predominantly quasars; 1525 {+1300/-475}). It is unlikely that this rising trend can be accounted for by a contribution of AGN heating to L(FIR) alone, and may hint at a higher median gas density and/or elevated star-formation efficiency toward the more luminous high-redshift systems. There is marginal evidence that the L(FIR)/L'(HCN) ratio in J1148+5251 may even exceed the rising trend set by other z>2 galaxies; however, only future facilities with very large collecting areas such as the SKA will offer the sensitivity required to further investigate this question.Comment: 5 pages, 2 figures, 2 tables, to appear in ApJL (accepted October 24, 2007

    Application of differential pH technique to the determination of urea in Italian wines

    Get PDF
    A method for the quantification of urea in wine, based on measuring the change in pH when urease is added to the sample, is presented and compared to the conventional dual enzyme (urease/glutamate dehydrogenase) approach. The method is linear in the range 0-30 mg·l-1 in red, white and “raisin” wines, and the detection limit (0.3 mg·l-1) is lower than for the usual enzymatic method. The differential pH technique presented here gives accurate quantification of urea in wine, being unaffected by the presence of ammonium. The amounts of urea in 195 still and sparkling commercially available wines with designation of geographic origin from the most renowned Italian grape growing areas were quantified. 17.4 % of samples were over the 3 mg·l-1 level suggested by the International Organisation of Vine and Wine for urease treatment to limit the potential risk for ethyl carbamate formation during wine ageing. Yeast strains EC1118 and SP665 can minimise urea content in wine.

    Double Scaling Limits and Twisted Non-Critical Superstrings

    Full text link
    We consider double-scaling limits of multicut solutions of certain one matrix models that are related to Calabi-Yau singularities of type A and the respective topological B model via the Dijkgraaf-Vafa correspondence. These double-scaling limits naturally lead to a bosonic string with c ≀\leq 1. We argue that this non-critical string is given by the topologically twisted non-critical superstring background which provides the dual description of the double-scaled little string theory at the Calabi-Yau singularity. The algorithms developed recently to solve a generic multicut matrix model by means of the loop equations allow to show that the scaling of the higher genus terms in the matrix model free energy matches the expected behaviour in the topological B-model. This result applies to a generic matrix model singularity and the relative double-scaling limit. We use these techniques to explicitly evaluate the free energy at genus one and genus two.Comment: 32 pages, 3 figure

    Spin-squeezing and Dicke state preparation by heterodyne measurement

    Full text link
    We investigate the quantum non-demolition (QND) measurement of an atomic population based on a heterodyne detection and show that the induced back-action allows to prepare both spin-squeezed and Dicke states. We use a wavevector formalism to describe the stochastic process of the measurement and the associated atomic evolution. Analytical formulas of the atomic distribution momenta are derived in the weak coupling regime both for short and long time behavior, and they are in good agreement with those obtained by a Monte-Carlo simulation. The experimental implementation of the proposed heterodyne detection scheme is discussed. The role played in the squeezing process by the spontaneous emission is considered
    • 

    corecore