180 research outputs found
Microglia and the aging brain:are senescent microglia the key to neurodegeneration?
The single largest risk factor for etiology of neurodegenerative diseases like Alzheimer's disease is increased age. Therefore, understanding the changes that occur as a result of aging is central to any possible prevention or cure for such conditions. Microglia, the resident brain glial population most associated with both protection of neurons in health and their destruction is disease, could be a significant player in age related changes. Microglia can adopt an aberrant phenotype sometimes referred to either as dystrophic or senescent. While aged microglia have been frequently identified in neurodegenerative diseases such as Alzheimer's disease, there is no conclusive evidence that proves a causal role. This has been hampered by a lack of models of aged microglia. We have recently generated a model of senescent microglia based on the observation that all dystrophic microglia show iron overload. Iron-overloading cultured microglia causes them to take on a senescent phenotype and can cause changes in models of neurodegeneration similar to those observed in patients. This review considers how this model could be used to determine the role of senescent microglia in neurodegenerative diseases.</p
Quasi-static crushing response of square hybrid carbon/aramid tube for automotive crash box application
One of the essential automotive parts is a crash box, which is essential for initial kinetic energy absorption. However, both vehicle weight and energy-absorbing performance of crash box requirements have to achieve. Recently, crash boxes made of hybrid materials have increasingly studied regarding their better crash performance and weight reduction effects compared to conventional metallic materials. Therefore, the aim of this study is to fabricate a hybrid carbon/aramid composite crash box with a hollow structure and to determine its mechanical properties under quasi-static axial compressive and tensile loading. This study shows that square hybrid carbon/aramid tubes provide an average 57.94 J energy absorption, average 0.72 kJ/kg specific energy absorption, average 62.46 kN crushing peak load, average 748.40 MPa compressive modulus and average 36.29 MPa maximum stress under quasi-static compressive loading. It is suggested that a square hybrid carbon/aramid tube could have the promising potential to replace aluminium or metallic structure to use as an automotive crash box for lightweight applications
The regulatory mechanisms of NG2/CSPG4 expression
Neuron-glial antigen 2 (NG2), also known as chondroitin sulphate proteoglycan 4 (CSPG4), is a surface type I transmembrane core proteoglycan that is crucially involved in cell survival, migration and angiogenesis. NG2 is frequently used as a marker for the identification and characterization of certain cell types, but little is known about the mechanisms regulating its expression. In this review, we provide evidence that the regulation of NG2 expression underlies inflammation and hypoxia and is mediated by methyltransferases, transcription factors, including Sp1, paired box (Pax) 3 and Egr-1, and the microRNA miR129-2. These regulatory factors crucially determine NG2-mediated cellular processes such as glial scar formation in the central nervous system (CNS) or tumor growth and metastasis. Therefore, they are potential targets for the establishment of novel NG2-based therapeutic strategies in the treatment of CNS injuries, cancer and other conditions of these types
The Pathway Coexpression Network: Revealing pathway relationships.
A goal of genomics is to understand the relationships between biological processes. Pathways contribute to functional interplay within biological processes through complex but poorly understood interactions. However, limited functional references for global pathway relationships exist. Pathways from databases such as KEGG and Reactome provide discrete annotations of biological processes. Their relationships are currently either inferred from gene set enrichment within specific experiments, or by simple overlap, linking pathway annotations that have genes in common. Here, we provide a unifying interpretation of functional interaction between pathways by systematically quantifying coexpression between 1,330 canonical pathways from the Molecular Signatures Database (MSigDB) to establish the Pathway Coexpression Network (PCxN). We estimated the correlation between canonical pathways valid in a broad context using a curated collection of 3,207 microarrays from 72 normal human tissues. PCxN accounts for shared genes between annotations to estimate significant correlations between pathways with related functions rather than with similar annotations. We demonstrate that PCxN provides novel insight into mechanisms of complex diseases using an Alzheimer's Disease (AD) case study. PCxN retrieved pathways significantly correlated with an expert curated AD gene list. These pathways have known associations with AD and were significantly enriched for genes independently associated with AD. As a further step, we show how PCxN complements the results of gene set enrichment methods by revealing relationships between enriched pathways, and by identifying additional highly correlated pathways. PCxN revealed that correlated pathways from an AD expression profiling study include functional clusters involved in cell adhesion and oxidative stress. PCxN provides expanded connections to pathways from the extracellular matrix. PCxN provides a powerful new framework for interrogation of global pathway relationships. Comprehensive exploration of PCxN can be performed at http://pcxn.org/
Prognostic indicators and outcomes of hospitalised COVID-19 patients with neurological disease: An individual patient data meta-analysis
BACKGROUND: Neurological COVID-19 disease has been reported widely, but published studies often lack information on neurological outcomes and prognostic risk factors. We aimed to describe the spectrum of neurological disease in hospitalised COVID-19 patients; characterise clinical outcomes; and investigate factors associated with a poor outcome. METHODS: We conducted an individual patient data (IPD) meta-analysis of hospitalised patients with neurological COVID-19 disease, using standard case definitions. We invited authors of studies from the first pandemic wave, plus clinicians in the Global COVID-Neuro Network with unpublished data, to contribute. We analysed features associated with poor outcome (moderate to severe disability or death, 3 to 6 on the modified Rankin Scale) using multivariable models. RESULTS: We included 83 studies (31 unpublished) providing IPD for 1979 patients with COVID-19 and acute new-onset neurological disease. Encephalopathy (978 [49%] patients) and cerebrovascular events (506 [26%]) were the most common diagnoses. Respiratory and systemic symptoms preceded neurological features in 93% of patients; one third developed neurological disease after hospital admission. A poor outcome was more common in patients with cerebrovascular events (76% [95% CI 67-82]), than encephalopathy (54% [42-65]). Intensive care use was high (38% [35-41]) overall, and also greater in the cerebrovascular patients. In the cerebrovascular, but not encephalopathic patients, risk factors for poor outcome included breathlessness on admission and elevated D-dimer. Overall, 30-day mortality was 30% [27-32]. The hazard of death was comparatively lower for patients in the WHO European region. INTERPRETATION: Neurological COVID-19 disease poses a considerable burden in terms of disease outcomes and use of hospital resources from prolonged intensive care and inpatient admission; preliminary data suggest these may differ according to WHO regions and country income levels. The different risk factors for encephalopathy and stroke suggest different disease mechanisms which may be amenable to intervention, especially in those who develop neurological symptoms after hospital admission
Dietary phytochemicals and neuro-inflammaging: from mechanistic insights to translational challenges
- …