5 research outputs found

    Global Distribution and Ecology of Hyperaccumulator Plants

    No full text
    International audienceA large body of analytical data is available on the inorganic composition of many thousands of plant species, for which typical concentration ranges have been tabulated for major, minor, and trace elements. These elements include those that have been shown essential for plant growth, as well as others that lack this status, at least universally. Metalliferous soils, having abnormally high concentrations of some of the elements that are generally present only at minor (e.g. 200–2000 Όg g−1) or trace (e.g. 0.1–200 Όg g−1) levels, have attracted increasing attention during the last 50 years. The effects vary widely, depending on the species, the relevant elements, and soil characteristics that collectively influence the availability of metals to plants. Some of these soils are toxic to all or most higher plants. Others have hosted the development of specialized plant communities consisting of a restricted and locally characteristic range of metal-tolerant species. These typically show a slightly elevated concentration of the elements with which the soil is enriched, but in places a species may exhibit extreme accumulation of one or more of these elements, to a concentration level that can be hundreds or even thousands of times greater than that usually found in plants on the most common soils. These plants, now widely referred to as hyperaccumulators, are a remarkable resource for many types of fundamental scientific investigation (plant systematics, ecophysiology, biochemistry, genetics and molecular biology) and for applications such as phytoremediation and agromining. Systematic analysis of herbarium specimens by X-ray Fluorescence, combined with auxiliary collection data, can provide insights into phylogenetic patterns of hyperaccumulation, and has the potential to complement and add insights to biogeographical and phylogenetic studies
    corecore