197 research outputs found

    Utilisation of Mucuna Beans (Mucuna pruriens (L.) DC ssp. deeringianum (Bart) Hanelt) to Feed Growing Broilers

    Get PDF
    Performance of broilers fed on diets containing mucuna beans (MB) (Mucuna pruriens (L.) DC ssp. deeringianum (Bart) Hanelt) with different treatments were studied in three experiments. First experiment: three sorghum diets using 0 and 280g/kg of MB raw or soaked were evaluated. Second experiment: three sorghum diets using 0 and 280g/kg of MB raw or boiled were evaluated. Third experiment: six maize diets: maize only, three diets containing 280g/kg of MB raw, soaked or boiled, one containing soybean and a balanced diet (control) were evaluated. Experiment one: the birds fed on the 0g MB/kg showed a higher live weight gain (LWG) and a lower feed:gain ratio (FG) (p 0.01) than birds fed on the MB diets. There were no differences for any of the variables studied between the birds fed on the MB diets. Experiment two: the birds fed on the 0g MB/kg performed better (p 0.01) than birds fed on the MB diets. However, birds fed on the boiled MB diet had a higher LWG and a lower FG (p 0.01) than birds fed on the raw and soaked MB diet. Experiment three: the birds fed on the control diet obtained a higher LWG (p 0.01) than birds fed on the remainder treatments. The birds fed on the raw MB diet had a lower FG (p 0.01) than birds on the remainder treatments. However, birds fed on the boiled MB had a higher LWG and feed intake than birds fed on raw and soaked MB diets and only maize diet (p 0.01), but, lower (p 0.01) in comparison to birds fed on the soybean diet. The birds on the raw and soaked MB diets performed worst (p 0.01), even in comparison to birds fed on only maize (p 0.01). The results from these experiments indicated that inclusion of 280g MB/kg in the diet affected adversely the poultry performance. However, utilisation of MB boiled improved the broilers performance compared to birds fed on the raw and soaked MB diets

    Socio-economic and Technical Characteristics of Backyard Animal Husbandry in Two Rural Communities of Yucatan, Mexico

    Get PDF
    This research work was conducted in order to asses the socio-economic and technical aspects of backyard animal rearing in two communities of Yucatán, México. One hundred and thirty nine families were interviewed in Sudzal (C1) and 117 families in San Jose Tzal (C2). A structured questionnaire was used to interview the families on technical and socio-economic aspects. Using this information the technical level of animal husbandry and a index of socio-economic status of the families involved in backyard animal rearing in both communities were determined. In C1 46.8% of the interviewed families reared animals in their backyard in comparison to 70.9% in C2. Main animal species kept in the backyard were chickens (C1= 92.3% and C2= 88.0), turkeys (C1= 63.1% and C2= 55.4%) and pigs (C1= 38.5% and 1C2= 5. 7% in C1 and C2 respectively). In C2 100% of pigs kept in the backyard were of the commercial type. Technical level in animal production was significantly higher (P 0.0001) in C2 than in C1, because utilisation of commercial diets was higher in C2 (P 0.001) than in C1. The families of C2 had a higher socio-economic level (P 0.002) than families from C1, because families of C2 have houses built with lasting materials (P 0.0001) and the occupation of the head of the family was associated with higher income (merchants or employees) (P 0.0001). The correlation coefficients between socio-economic status and technical level in backyard animal production showed that 84% of the technical level was explained by the socio-economic status. It can be concluded that socio-economic status has a high influence on backyard animal production characteristics. The socio-economic status determine the number of animals kept and the technical level in animal rearing

    Modeling gaseous non-reactive flow in a lean direct injection gas turbine combustor through an advanced mesh control strategy

    Full text link
    [EN] Fuel efficiency improvement and harmful emissions reduction are the main motivations for the development of gas turbine combustors. Numerical computational fluid dynamics (CFD) simulations of these devices are usually computationally expensive since they imply a multi-scale problem. In this work, gaseous non-reactive unsteady Reynolds-Averaged Navier-Stokes and large eddy simulations of a gaseous-fueled radial-swirled lean direct injection combustor have been carried out through CONVERGE (TM) CFD code by solving the complete inlet flow path through the swirl vanes and the combustor. The geometry considered is the gaseous configuration of the CORIA lean direct injection combustor, for which detailed measurements are available. The emphasis of the work is placed on the demonstration of the CONVERGE (TM) applicability to the multi-scale gas turbine engines field and the determination of an optimal mesh strategy through several grid control tools (i.e., local refinement, adaptive mesh refinement) allowing the exploitation of its automatic mesh generation against traditional fixed mesh approaches. For this purpose, the normalized mean square error has been adopted to quantify the accuracy of turbulent numerical statistics regarding the agreement with the experimental database. Furthermore, the focus of the work is to study the behavior when coupling several large eddy simulation sub-grid scale models (i.e., Smagorinsky, Dynamic Smagorinsky, and Dynamic Structure) with the adaptive mesh refinement algorithm through the evaluation of its specific performances and predictive capabilities in resolving the spatial-temporal scales and the intrinsically unsteady flow structures generated within the combustor. This investigation on the main non-reacting swirling flow characteristics inside the combustor provides a suitable background for further studies on combustion instability mechanisms.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partly sponsored by the program "Ayuda a Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), Spain.'' The support given to Mr. Mario Belmar by Universitat Politecnica de Valencia through the "FPI-Subprograma 2'' grant within the "Programa de Apoyo para la Investigacion y Desarrollo (PAID-01-18)'' is gratefully acknowledged.Payri, R.; Novella Rosa, R.; Carreres, M.; Belmar-Gil, M. (2020). Modeling gaseous non-reactive flow in a lean direct injection gas turbine combustor through an advanced mesh control strategy. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering. 234(11):1788-1810. https://doi.org/10.1177/0954410020919619S1788181023411Patel, N., Kırtaş, M., Sankaran, V., & Menon, S. (2007). Simulation of spray combustion in a lean-direct injection combustor. Proceedings of the Combustion Institute, 31(2), 2327-2334. doi:10.1016/j.proci.2006.07.232Luo, K., Pitsch, H., Pai, M. G., & Desjardins, O. (2011). Direct numerical simulations and analysis of three-dimensional n-heptane spray flames in a model swirl combustor. Proceedings of the Combustion Institute, 33(2), 2143-2152. doi:10.1016/j.proci.2010.06.077Masri, A. R., Pope, S. B., & Dally, B. B. (2000). Probability density function computations of a strongly swirling nonpremixed flame stabilized on a new burner. Proceedings of the Combustion Institute, 28(1), 123-131. doi:10.1016/s0082-0784(00)80203-9Johnson, M. R., Littlejohn, D., Nazeer, W. A., Smith, K. O., & Cheng, R. K. (2005). A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines. Proceedings of the Combustion Institute, 30(2), 2867-2874. doi:10.1016/j.proci.2004.07.040Sankaran, V., & Menon †, S. (2002). LES of spray combustion in swirling flows. Journal of Turbulence, 3, N11. doi:10.1088/1468-5248/3/1/011Jones, W. P., Marquis, A. J., & Vogiatzaki, K. (2014). Large-eddy simulation of spray combustion in a gas turbine combustor. Combustion and Flame, 161(1), 222-239. doi:10.1016/j.combustflame.2013.07.016Ding, G., He, X., Xue, C., Zhao, Z., & Jin, Y. (2015). Preliminary design and experimental verification of a triple swirler combustor. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(12), 2258-2271. doi:10.1177/0954410015573555Menon, S., & Patel, N. (2006). Subgrid Modeling for Simulation of Spray Combustion in Large-Scale Combustors. AIAA Journal, 44(4), 709-723. doi:10.2514/1.14875Wang, P., Platova, N. A., Fröhlich, J., & Maas, U. (2014). Large Eddy Simulation of the PRECCINSTA burner. International Journal of Heat and Mass Transfer, 70, 486-495. doi:10.1016/j.ijheatmasstransfer.2013.11.025Cordier, M., Vandel, A., Cabot, G., Renou, B., & Boukhalfa, A. M. (2013). Laser-Induced Spark Ignition of Premixed Confined Swirled Flames. Combustion Science and Technology, 185(3), 379-407. doi:10.1080/00102202.2012.725791Patel, N., & Menon, S. (2008). Simulation of spray–turbulence–flame interactions in a lean direct injection combustor. Combustion and Flame, 153(1-2), 228-257. doi:10.1016/j.combustflame.2007.09.011Bang, B.-H., Kim, Y.-I., Jeong, S., Yoon, Y., Yarin, A. L., & Yoon, S. S. (2019). Theoretical model for swirling thin film flows inside nozzles with converging-diverging shapes. Applied Mathematical Modelling, 76, 607-616. doi:10.1016/j.apm.2019.06.025Linne, M., Paciaroni, M., Hall, T., & Parker, T. (2006). Ballistic imaging of the near field in a diesel spray. Experiments in Fluids, 40(6), 836-846. doi:10.1007/s00348-006-0122-0Desantes, J. M., Salvador, F. J., López, J. J., & De la Morena, J. (2010). Study of mass and momentum transfer in diesel sprays based on X-ray mass distribution measurements and on a theoretical derivation. Experiments in Fluids, 50(2), 233-246. doi:10.1007/s00348-010-0919-8Reddemann, M. A., Mathieu, F., & Kneer, R. (2013). Transmitted light microscopy for visualizing the turbulent primary breakup of a microscale liquid jet. Experiments in Fluids, 54(11). doi:10.1007/s00348-013-1607-2Chen, R.-H., & Driscoll, J. F. (1989). The role of the recirculation vortex in improving fuel-air mixing within swirling flames. Symposium (International) on Combustion, 22(1), 531-540. doi:10.1016/s0082-0784(89)80060-8Presser, C., Gupta, A. K., & Semerjian, H. G. (1993). Aerodynamic characteristics of swirling spray flames: Pressure-jet atomizer. Combustion and Flame, 92(1-2), 25-44. doi:10.1016/0010-2180(93)90196-aBulzan, D. L. (1995). Structure of a swirl-stabilized combusting spray. Journal of Propulsion and Power, 11(6), 1093-1102. doi:10.2514/3.23946Sommerfeld, M., & Qiu, H.-H. (1998). Experimental studies of spray evaporation in turbulent flow. International Journal of Heat and Fluid Flow, 19(1), 10-22. doi:10.1016/s0142-727x(97)10002-9Hadef, R., & Lenze, B. (2005). Measurements of droplets characteristics in a swirl-stabilized spray flame. Experimental Thermal and Fluid Science, 30(2), 117-130. doi:10.1016/j.expthermflusci.2005.05.002Soltani, M. R., Ghorbanian, K., Ashjaee, M., & Morad, M. R. (2005). Spray characteristics of a liquid–liquid coaxial swirl atomizer at different mass flow rates. Aerospace Science and Technology, 9(7), 592-604. doi:10.1016/j.ast.2005.04.004Tratnig, A., & Brenn, G. (2010). Drop size spectra in sprays from pressure-swirl atomizers. International Journal of Multiphase Flow, 36(5), 349-363. doi:10.1016/j.ijmultiphaseflow.2010.01.008Asgari, B., & Amani, E. (2017). A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors. Applied Energy, 203, 696-710. doi:10.1016/j.apenergy.2017.06.080Moureau, V., Domingo, P., & Vervisch, L. (2011). From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling. Combustion and Flame, 158(7), 1340-1357. doi:10.1016/j.combustflame.2010.12.004Caraeni, D., Bergström, C., & Fuchs, L. (2000). Flow, Turbulence and Combustion, 65(2), 223-244. doi:10.1023/a:1011428926494Icardi, M., Gavi, E., Marchisio, D. L., Olsen, M. G., Fox, R. O., & Lakehal, D. (2011). Validation of LES predictions for turbulent flow in a Confined Impinging Jets Reactor. Applied Mathematical Modelling, 35(4), 1591-1602. doi:10.1016/j.apm.2010.09.035Sankaran, V., & Menon, S. (2002). Vorticity-scalar alignments and small-scale structures in swirling spray combustion. Proceedings of the Combustion Institute, 29(1), 577-584. doi:10.1016/s1540-7489(02)80074-8Lebas, R., Menard, T., Beau, P. A., Berlemont, A., & Demoulin, F. X. (2009). Numerical simulation of primary break-up and atomization: DNS and modelling study. International Journal of Multiphase Flow, 35(3), 247-260. doi:10.1016/j.ijmultiphaseflow.2008.11.005Zhou, Y., Huang, Y., & Mu, Z. (2017). Large eddy simulation of the influence of synthetic inlet turbulence on a practical aeroengine combustor with counter-rotating swirler. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(3), 978-990. doi:10.1177/0954410017745900Torregrosa, A. J., Broatch, A., García-Tíscar, J., & Gomez-Soriano, J. (2018). Modal decomposition of the unsteady flow field in compression-ignited combustion chambers. Combustion and Flame, 188, 469-482. doi:10.1016/j.combustflame.2017.10.007Xu, L., Bai, X.-S., Jia, M., Qian, Y., Qiao, X., & Lu, X. (2018). Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system. Applied Energy, 230, 287-304. doi:10.1016/j.apenergy.2018.08.104Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106Esclapez, L., Riber, E., & Cuenot, B. (2015). Ignition probability of a partially premixed burner using LES. Proceedings of the Combustion Institute, 35(3), 3133-3141. doi:10.1016/j.proci.2014.07.040Rhie, C. M., & Chow, W. L. (1983). Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal, 21(11), 1525-1532. doi:10.2514/3.8284Gousseau, P., Blocken, B., & van Heijst, G. J. F. (2013). Quality assessment of Large-Eddy Simulation of wind flow around a high-rise building: Validation and solution verification. Computers & Fluids, 79, 120-133. doi:10.1016/j.compfluid.2013.03.006Hanna, S. ., Tehranian, S., Carissimo, B., Macdonald, R. ., & Lohner, R. (2002). Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays. Atmospheric Environment, 36(32), 5067-5079. doi:10.1016/s1352-2310(02)00566-6Hanna, S. R., Hansen, O. R., & Dharmavaram, S. (2004). FLACS CFD air quality model performance evaluation with Kit Fox, MUST, Prairie Grass, and EMU observations. Atmospheric Environment, 38(28), 4675-4687. doi:10.1016/j.atmosenv.2004.05.041Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520. doi:10.1063/1.858424Blazek, J. (2015). Turbulence Modeling. Computational Fluid Dynamics: Principles and Applications, 213-252. doi:10.1016/b978-0-08-099995-1.00007-5Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035Celik, I. B., Cehreli, Z. N., & Yavuz, I. (2005). Index of Resolution Quality for Large Eddy Simulations. Journal of Fluids Engineering, 127(5), 949-958. doi:10.1115/1.1990201Celik, I., Klein, M., & Janicka, J. (2009). Assessment Measures for Engineering LES Applications. Journal of Fluids Engineering, 131(3). doi:10.1115/1.3059703Ivanic, T., Foucault, E., & Pecheux, J. (2003). Dynamics of swirling jet flows. Experiments in Fluids, 35(4), 317-324. doi:10.1007/s00348-003-0646-5Huang, Y., & Yang, V. (2009). Dynamics and stability of lean-premixed swirl-stabilized combustion. Progress in Energy and Combustion Science, 35(4), 293-364. doi:10.1016/j.pecs.2009.01.002Syred, N., & Beér, J. M. (1974). Combustion in swirling flows: A review. Combustion and Flame, 23(2), 143-201. doi:10.1016/0010-2180(74)90057-

    Jellyfish stings trigger gill disorders and increased mortality in farmed sparus aurata (linnaeus, 1758) in the mediterranean sea

    Get PDF
    Jellyfish are of particular concern for marine finfish aquaculture. In recent years repeated mass mortality episodes of farmed fish were caused by blooms of gelatinous cnidarian stingers, as a consequence of a wide range of hemolytic, cytotoxic, and neurotoxic properties of associated cnidocytes venoms. The mauve stinger jellyfish Pelagia noctiluca (Scyphozoa) has been identified as direct causative agent for several documented fish mortality events both in Northern Europe and the Mediterranean Sea aquaculture farms. We investigated the effects of P. noctiluca envenomations on the gilthead sea bream Sparus aurata by in vivo laboratory assays. Fish were incubated for 8 hours with jellyfish at 3 different densities in 300 l experimental tanks. Gill disorders were assessed by histological analyses and histopathological scoring of samples collected at time intervals from 3 hours to 4 weeks after initial exposure. Fish gills showed different extent and severity of gill lesions according to jellyfish density and incubation time, and long after the removal of jellyfish from tanks. Jellyfish envenomation elicits local and systemic inflammation reactions, histopathology and gill cell toxicity, with severe impacts on fish health. Altogether, these results shows P. noctiluca swarms may represent a high risk for Mediterranean finfish aquaculture farms, generating significant gill damage after only a few hours of contact with farmed S. aurata. Due to the growth of the aquaculture sector and the increased frequency of jellyfish blooms in the coastal waters, negative interactions between stinging jellyfish and farmed fish are likely to increase with the potential for significant economic losses

    Biochemical characterization of cassiopea andromeda (Forssk\ue5l, 1775), another red sea jellyfish in the western mediterranean sea

    Get PDF
    Increasing frequency of native jellyfish proliferations and massive appearance of non-indigenous jellyfish species recently concur to impact Mediterranean coastal ecosystems and human activities at sea. Nonetheless, jellyfish biomass may represent an exploitable novel resource to coastal communities, with reference to its potential use in the pharmaceutical, nutritional, and nutraceutical Blue Growth sectors. The zooxanthellate jellyfish Cassiopea andromeda, Forssk\ue5l, 1775 (Cnidaria, Rhizostomeae) entered the Levant Sea through the Suez Canal and spread towards the Western Mediterranean to reach Malta, Tunisia, and recently also the Italian coasts. Here we report on the biochemical characterization and antioxidant activity of C. andromeda specimens with a discussion on their relative biological activities. The biochemical characterization of the aqueous (PBS) and hydroalcoholic (80% ethanol) soluble components of C. andromeda were performed for whole jellyfish, as well as separately for umbrella and oral arms. The insoluble components were hydrolyzed by sequential enzymatic digestion with pepsin and collagenase. The composition and antioxidant activity of the insoluble and enzymatically digestible fractions were not affected by the pre-extraction types, resulting into collagen-and non-collagen-derived peptides with antioxidant activity. Both soluble compounds and hydrolyzed fractions were characterized for the content of proteins, phenolic compounds, and lipids. The presence of compounds coming from the endosymbiont zooxanthellae was also detected. The notable yield and the considerable antioxidant activity detected make this species worthy of further study for its potential biotechnological sustainable exploitation

    Geometrical isotropy in perforated plates with subwavelength holes decorated with Archimedean patterns

    Full text link
    The design and use of small apertures perforated in opaque plates to control the transmission of ultrasonic waves has been widely studied in recent years. The ultrasonic transmission response of brass plates perforated with Archimedean patterns of subwavelength hole arrays immersed in water is reported, both numerically and experimentally, in this work. It is shown that an increase in the geometrical isotropy of the elementary cells of the Archimedean patterns gives rise to a suppression of both minimum and maximum transmission corresponding to the destructive and constructive interferences, leading to uniformity within the angle-dependent transmitted sound power coefficient. The experimental results are in close agreement with the calculated ones. This property can be used to design ultrasonic devices such as filters and sensors.This work has been supported by the Spanish MICINN (MAT2010-16879) and Generalitat Valenciana (PROM-ETEOII/2014/026).Gómez Lozano, V.; Rubio Michavila, C.; Candelas Valiente, P.; Belmar Ibáñez, F.; Uris Martínez, A. (2015). Geometrical isotropy in perforated plates with subwavelength holes decorated with Archimedean patterns. EPL. 111(3):34002p1-34002p5. https://doi.org/10.1209/0295-5075/111/34002S34002p134002p5111

    Effectiveness of biomaterial-based combination strategies for spinal cord repair – a systematic review and meta-analysis of preclinical literature

    Get PDF
    Funding This work was supported by the Institute of Medical Sciences of the University of Aberdeen, International Spinal Research Trust, Scottish Rugby Union, RS McDonald Charitable Trust and The European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie grant agreement no. 702213).Peer reviewedPublisher PD

    Pojava dviju rijetkih vrsta iz reda Lampriformes: britke jedroglavke Lophotus lacepede (Giorna, 1809) i vlasuljke Zu cristatus (Bonelli, 1819) kod sjeverne obale Sicilije, Italija

    Get PDF
    The bony fish Lophotus lacepede (Giorna, 1809) and Zu cristatus (Bonelli, 1819) are the two species rarely recorded within the Mediterranean basin, usually reported as accidentally captured in depth (mesopelagic) fishing operations. In the current work, we present the first record of L. lacepede and Z. cristatus in fishing catches from southwestern Tyrrhenian Sea. Moreover, in order to improve existent biological/ecological knowledge, some bio-related aspects such as feeding aspect, sexual maturity and age estimate have been discussed.Koštunjičave ribe Lophotus lacepede (Giorna, 1809)i Zu cristatus (Bonelli, 1819) dvije su vrste koje se rijetko nalaze u Sredozemnom moru i najčešće su zabilježene kao slučajni ulov pri ribolovu dubinskim alatima (mezopelagijal). U ovom radu predstavljamo prvi zapis britke jedroglavke i vlasuljke koje su uhvaćene tijekom ribolova u jugozapadnom dijelu Tirenskog mora. Štoviše, kako bi se poboljšalo postojeće znanje o biologiji i ekologiji, u radu se raspravlja o nekim biološkim određenim aspektima kao što su prehrana, spolna zrelost i procjena starosti

    Subwavelength slit acoustic metamaterial barrier

    Full text link
    [EN] Reduction of noise in the transmission path is a very important environmental problem. The standard method to reduce this noise level is the use of acoustic barriers. In this paper, an acoustic metamaterial based on sound transmission through subwavelength slits, is tailored to be used as an acoustic barrier. This system consists of two rows of periodic repetition of vertical rigid pickets separated by a slit of subwavelength width, embedded in air. Here, both the experimental and the numerical analyses are presented. These analyses have facilitated the identification of the parameters that affect the insertion loss performance. The results demonstrated that the proposed barrier can be tuned to mitigate a band noise in a mechanical plant for buildings where openings for air flow are required as well as industrial noise, without excessive barrier thickness.This work was financially supported by the Spanish Ministry of Science and Innovation through project MAT2010-16879.Rubio Michavila, C.; Candelas Valiente, P.; Belmar Ibáñez, F.; Gómez Lozano, V.; Uris Martínez, A. (2015). Subwavelength slit acoustic metamaterial barrier. Journal of Physics D: Applied Physics. 48(39):1-9. https://doi.org/10.1088/0022-3727/48/39/395501S19483

    Implementation of genomic surveillance of SARS-CoV-2 in the Caribbean: Lessons learned for sustainability in resource-limited settings

    Get PDF
    The COVID-19 pandemic highlighted the importance of global genomic surveillance to monitor the emergence and spread of SARS-CoV-2 variants and inform public health decision-making. Until December 2020 there was minimal capacity for viral genomic surveillance in most Caribbean countries. To overcome this constraint, the COVID-19: Infectious disease Molecular epidemiology for PAthogen Control & Tracking (COVID-19 IMPACT) project was implemented to establish rapid SARS-CoV-2 whole genome nanopore sequencing at The University of the West Indies (UWI) in Trinidad and Tobago (T&T) and provide needed SARS-CoV-2 sequencing services for T&T and other Caribbean Public Health Agency Member States (CMS). Using the Oxford Nanopore Technologies MinION sequencing platform and ARTIC network sequencing protocols and bioinformatics pipeline, a total of 3610 SARS-CoV-2 positive RNA samples, received from 17 CMS, were sequenced in-situ during the period December 5th 2020 to December 31st 2021. Ninety-one Pango lineages, including those of five variants of concern (VOC), were identified. Genetic analysis revealed at least 260 introductions to the CMS from other global regions. For each of the 17 CMS, the percentage of reported COVID-19 cases sequenced by the COVID-19 IMPACT laboratory ranged from 0·02% to 3·80% (median = 1·12%). Sequences submitted to GISAID by our study represented 73·3% of all SARS-CoV-2 sequences from the 17 CMS available on the database up to December 31st 2021. Increased staffing, process and infrastructural improvement over the course of the project helped reduce turnaround times for reporting to originating institutions and sequence uploads to GISAID. Insights from our genomic surveillance network in the Caribbean region directly influenced non-pharmaceutical countermeasures in the CMS countries. However, limited availability of associated surveillance and clinical data made it challenging to contextualise the observed SARS-CoV-2 diversity and evolution, highlighting the need for development of infrastructure for collecting and integrating genomic sequencing data and sample-associated metadata
    corecore